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Course Overview

- Inference Approaches in Official Statistics

• An Introduction to Design-Based and Model-Assisted 

Analysis

- Basic Notation and Formulas

- The Importance of Weighting

- Horvitz-Thompson Estimators and their Variance 

Estimators

- Calibration Estimators and their Variance Estimators

- Handling Nonresponse by Calibration

- Appendix - Selected Topics
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Inference Approaches in Official Statistics

• Design-Based Inference (randomization approach)

- The reference approach in National Statistical Institutes 
(NSI)

- Includes Model-Assisted methods (e.g. Calibration 
Estimators) as special cases

- Naturally belongs to the Frequentist inferential framework

• Model-Based Inference (prediction approach)

- In NSIs typically used to complement analyses when the 
Design-Based approach would fail

� e.g. to treat Nonresponse, frame imperfections, 

measurement errors, non-probability samples, 0

- Can adopt either Frequentist or Bayesian inferential 
frameworks
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Design-Based Inference (1/2)

• Finite population values y1, ..., yN and parameters θ

are non-random quantities (i.e. fixed and error-free)

• Randomness arises only from probability sampling

- Samples are drawn by means of rigorously random
algorithms

- Each unit in the population has a known, non-zero
probability of being selected in the random sample

� Data sampling is entirely controlled

• Ideally, the STATISTICIAN is the one and the only 

RANDOMIZER

- Ideally means ignoring all non-sampling errors (e.g. list 
problems, total and item nonresponse, measurement 
errors0)
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Design-Based Inference (2/2)

• Statistical properties of estimators         (like bias and 

efficiency) depend on the probability distribution induced 

by the sampling design p(s)

• Estimators         invariably involve survey weights tied to 

sample units 

- weights may either depend only on the sampling design or 
incorporate further auxiliary information on the target 
population

• Design-Based methods allow to:

- Build unbiased estimators (or nearly so) 

� even if samples are not naively representative, because we 

can adjust for unequal inclusion probabilities!

- Exploit probability theory to assess the quality of obtained 
estimates

)(ˆ sθ

)(ˆ sθ
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Model-Assisted Inference

• Key distinction: interest variable Y and auxiliary variables X

• Relations between Y and X are generated by Nature (i.e. by 

real-world, domain-specific phenomena which are unknown)

• Auxiliary information about the target population is available 

from sources external to the survey at hand

- Can use this information to describe relations between Y and X
through a statistical model

• Model-Assisted inference is a suite of methods to improve the 

quality of Design-Based inferences by hinging upon available 

auxiliary information in a systematic and rigorous way

- build more efficient (but still nearly unbiased) estimators

- reduce bias (from nonresponse, frame imperfections, 0)

• Note: the model is assisting only (i.e. descriptive): no stochastic 

structure ever assumed!
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Model-Based Inference (1/2)

• Finite population values y1, ..., yN and parameters θ are 

realizations of random variables that follow some unknown 

stochastic model (the superpopulation model)

• NATURE is the one and the only RANDOMIZER

- A statistical model is a (human interpretable) guess made by 
the statistician about the true, unknown data generating 
mechanism adopted by Nature

• Model-Based inference requires two steps:

1) A model condensing assumptions on the probability 
distribution of Y and X, as well as on their dependency 
structure, is fitted and tested against observed data

2) The fitted model is used to predict unobserved values, i.e. 
values yk for units k which do not belong to the sample:

predicted  yy    unobserved  y kkk )(ˆˆ x=→
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Model-Based Inference (2/2)

• The Model-Based approach can be applied to both 

probability and non-probability samples

- For non-probability samples, model-based estimation is the 
only viable choice

• Model-Based inference treats the sample as fixed and 

ignores the sampling design

- Strictly speaking, this is correct only for self-weighting
designs

• Model-Based methods allow to build estimators that 

are unbiased under the adopted model

- No definitive protection against bias exists

- Bias can always be lurking, due to model misspecification
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Inference in Official Statistics – Pictorial Synopsis
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An Introduction to Design-Based 

and Model-Assisted Analysis
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Basic Notation and Formulas (1/5)

• Finite target population U of units:

• Probability sample s drawn from U:

• Sampling design:

• First order inclusion probabilities:

• Second order inclusion probabilities:
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Basic Notation and Formulas (2/5)

• Estimator of a population parameter θ:

• Design Expectation:

• Design Bias:

• Design Variance:

• Design Covariance:
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Basic Notation and Formulas (3/5)

• Design Mean Squared Error:

• Sample Membership Indicators (random variables):

• Notable relations with inclusion probabilities:
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Basic Notation and Formulas (4/5)

• Sample Membership Indicators (matrix notation):

• Sample size (random, in general):

• Average sample size:
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Basic Notation and Formulas (5/5)

• Survey variables (non-random values):

• Observed survey data:
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Two Fundamental Definitions (1/2)

Sampling Design:

1)  Probability Sampling Design:

Each unit in the population must have a strictly positive

inclusion probability

2)  Measurable Sampling Design:

Each pair of units in the population must have a strictly positive

second order (i.e. joint) inclusion probability

) selected is Pr()(]1,0[: sspSp =→
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Two Fundamental Definitions (2/2)

NON-probability sampling designs

• Building unbiased estimators is impossible in a design-based 

approach

- Samples can never be “representative” of the whole population, as 

units with zero inclusion probability will be never selected (e.g. cut-

off sampling in business surveys)

NON-measurable sampling designs

• Building unbiased variance estimators is impossible in a design-

based approach

- Even if unbiased estimators of population parameters exist (because 

of probability sampling) we will not be able to assess their precision 

and build valid confidence intervals (e.g. systematic sampling)
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Goals of Design-Based Survey Sampling

• Given a sampling design, build “good estimators” of 

population parameters

• A “good estimator” should be:

- Unbiased, or nearly so: substantial bias leads to poor 

estimates (on average) and prevents from building valid 

confidence intervals

- Efficient: small coefficient of variation (for a nearly unbiased 

estimator) means that, for most samples, the estimator is 

likely to produce an estimate near the true value

• Small bias and small variance are often conflicting 

objectives in practice
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The Importance of Weighting

• Suppose you want to estimate the population total of variable y:

• If you try with the naive estimator:

• 0you soon realize it’s biased:

• Removing bias is straightforward: simply introduce weighted

(aka Horvitz-Thompson, aka expansion) estimators:
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Direct Weights and HT Estimators

• Weights appearing in HT estimators are named “direct weights”

or “design weights”:

• Intuitively one can think that each sampled unit “represents” a 

number of population units given by its direct weight

• HT estimators are unbiased by construction (neglecting non-

response)

• Moreover they are linear functions of sample membership 

indicators, hence computing (formally) variance is easy:
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Estimating HT Estimators Variance (1/2)

• Formal expression for HT estimators variance relies on whole 

population, so variance true value is unknown

• Consequently to asses HT estimators efficiency we need to 

estimate it from the sample0

• 0let’s try again with a weighted estimator (as done before 

when estimating a total):

• It is easy to prove that above estimator (due again to Horvitz & 

Thompson again) is unbiased for the variance of HT
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Estimating HT Estimators Variance (2/2)

• A more concise formula for the unbiased variance estimator of 

the HT estimator of the total is as follows:

where:

and

• For fixed-size sampling a possible, still unbiased, alternative is 

due to Yates & Grundy & Sen:

j

sk sj

kkjHT yyYV
(((

∑∑
∈ ∈

∆=)ˆ(ˆ

kk

k

k
k dy

y
y ⋅==

π
(











−=

∆
=∆

kj

jk

kj

kj

kj π

ππ

π
1

(

2)(
2

1
)ˆ(ˆ

j

sk sj

kkjHTYGS yyYV
(((

∑∑
∈ ∈

−∆−=

Diego Zardetto, Estimation Theory for Sample Surveys22



A Very Important Example: SRSWOR (1/2)

• When dealing with simple random sampling without 

replacement we are able to compute all previous formulas 

explicitly:

• here f denotes the sampling fraction (aka finite population 

correction) and we used the sample mean and the sample 

variance of y:
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A Very Important Example: SRSWOR (2/2)

• Note that the HT variance estimator can also be expressed as:

• Most statistical software use the above formula, which can be 
easily modified in order to take into account stratification and 
clustering in wor sampling designs

• Clusters: substitute weighted y values for units with weighted y
totals into clusters

• Strata: sum over variances computed treating strata as 
independent samples

• The above expression is also the basic tool to build 
approximate variance formulas when dealing with multistage
sampling
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Why Real-Word Surveys Are So Difficult

• Complex selection schemes

- e.g. [multiphase / multistage / stratified / cluster / pps /

systematic / wor / mixed / 0] sampling

- computing first order inclusion probabilities becomes difficult (only 
approximations available for second order)

• Complex estimators

- e.g. [non linear / non analytic / model dependent / 0]

- main statistical properties (MSE, bias, consistency...) hard or even 
impossible to investigate from a theoretical standpoint

- variance estimation a big issue

• Non sampling errors

- e.g. [nonresponse / missing values / inconsistencies / 0]

- removing or reducing nonresponse bias requires: 1) understanding 
non response mechanism and 2) accurate auxiliary information

- assessing imputation variance is very hard (depends on imputation 
technique)
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• The HT variance formula obtained for SRSWOR can be suitably 

modified to cope with multistage, stratified, cluster sampling designs

• Complexity arising from multistage sampling is handled by the Ultimate 

Cluster Approximation (Kalton 1979):

- as long as the first stage sampling fraction is small, contribution to 
variance arising from stages other than the first can be neglected

• Therefore we need only to deal with PSUs. Let’s write yspk (dspk) for y

observed value (direct weight) for unit k in PSU p in stratum s and call 

ns (fs) the number (fraction) of sampled PSUs in stratum s

• Define y weighted total for PSUs in stratum s:

• and their mean:

Computing HT Variance for Multistage Designs (1/2)
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• Now take the old SRSWOR expression and: 1) substitute weighted y

values for units with weighted y totals for PSUs, 2) sum resulting 

expressions over all strata:

• Above formula is a good approximation for the HT variance estimator 

under multistage WithOut Replacement sampling with equal

probabilities and small first stage sampling fractions

• Most statistical software use it with fs=0 also for estimating HT variance 

for With Replacement sampling (thus implicitly using Hansen-Hurwitz 

rather than HT estimators). This works correctly both for equal and 

unequal (pps) inclusion probabilities

• Using the formula above with fs=0 for pps WithOut Replacement 

sampling results in conservative variance estimates. Alternatively, one 

must find approximate formulas for second order inclusion probabilities  
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The Calibration Approach to Survey Sampling

What do we mean by calibration?

• General definition

- a method to improve the quality of inferences by using 
available auxiliary information on the target population in a 
systematic and rigorous way

• Operative definition

- a method to compute weights (calibration weights) in such 
a way that:

1) a specified set of constraints (calibration equations) 
involving auxiliary variables is satisfied

2) weights can be used to compute weighted (though non 
linear) estimators (calibration estimators) of arbitrary
population parameters

3) calibration estimators are nearly unbiased and more 
efficient than HT
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The Calibration Problem
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The Calibration Problem: Some Comments (1/2)

• From a mathematical point of view, calibration is a constrained 

optimization problem:

- calibration weights are obtained by minimizing an appropriate 

distance function from direct weights0

- 0subject to calibration constraints ensuring that the calibrated 

estimates of the totals of a set of auxiliary variables exactly match

the corresponding known population totals

• From a statistical perspective, calibration generates a whole new class 

of estimators: the Calibration Estimators

• An important property of Calibration Estimators is UNIVERSALITY: 

since the calibration problem knows nothing about y

- one can use the same set of calibration weights wk to estimate 

arbitrary interest variables y

• Universality is often a fundamental requirement in Official Statistics, as 

sample surveys are typically multipurpose:

- Calibrate once, estimate whatever you need!

Diego Zardetto, Estimation Theory for Sample Surveys30



The Calibration Problem: Some Comments (2/2)

• Because sample size is greater than the number of auxiliary variables, 

calibration constraints alone are unable to select a unique set of 

calibration weights

• Distance minimization picks out a specific solution, but still we are left 

with the freedom to choose among many distinct distance functions G

• In order to ensure a solution, G must be twice differentiable w.r.t. w and 

strictly convex in a neighborhood of w=d, with G(d,d)=0

• Calibration weights will be a (complicated) function of direct weights, 

auxiliary variables and population totals (as well as of bounds, if any)

• Only for Euclidean G will that function be expressible in analytic closed-

form

• When G is the Euclidean distance, calibration estimators are identical 

to GREG estimators

• There exists a family of distances G such that calibration estimators 

are asymptotically equivalent to GREG for “big” sample sizes n
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Calibration: Why Minimizing a Distance?

• The idea of imposing calibration constraints seems rather 

natural: it’s good to make our estimates consistent with known 

aggregates0

• 0but why do we need to minimize a distance between direct 

and calibration weights?

• The reason is that we do want to modify as little as possible a 

good property of HT estimators: unbiasedness!

• Asking for near unbiasedness of calibration estimators 

(whatever the choice of variable y)0

• 0evidently translates into requiring small deviations from direct 

weights:
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How Does Calibration Improve Efficiency? (1/4)

• Generalized Regression Estimator basic theory provides a useful 
starting point

• Given the descriptive linear assisting model ξ with p regressors x1,…, xp:

• the GREG estimator for the total of y reads:

• where the weighted estimator for β has the familiar Least Squares 
expression arising in ordinary regression theory:

• with D being the diagonal matrix of sample direct weights and X (Y) the 
matrix (vector) of sample values for the auxiliary variables (study 
variable)
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How Does Calibration Improve Efficiency? (2/4)

• GREG estimator can be seen as the sum of an HT estimator plus a 

regression adjustment term, which is proportional to the difference 

between population totals and HT estimates of predictors (auxiliary 

variables) 

• Moreover, since the weighted estimator of β is linear in y, it follows that 

the GREG can be expressed as a weighted sum of yk:

• for some weights wk (or ratios gk= wk / dk) that depend (with a 

complicated expression) on direct weights and x values, but not on y:

• Not only is GREG a weighted estimator (though non-linear, due to the 

expression of the sample estimate of β), what’s more the weights it 

involves happen to be calibrated!
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How Does Calibration Improve Efficiency? (3/4)

• Provided both target population and sample sizes are big, GREG main 
statistical properties are under theoretical control

• Whatever the assisting model ξ, GREG is asymptotically unbiased with 
relative bias of order:

• Moreover if we call R2 the determination coefficient of the census least 
squares fit to the assisting model ξ, we can express GREG’s variance
as follows:

• Hence the efficiency gain of a GREG estimator, compared to the 
simple HT estimator, depends on the goodness of the assisting model 
ξ in fitting the population scatter of variables y, x1,…, xp

• The higher the power of the auxiliary variables x1,…, xp to predict the 
study variable y, the smaller will be GREG’s variance
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How Does Calibration Improve Efficiency? (4/4)

• Now we are in a good position to understand how does calibration 

improve efficiency

• The key point is that one can prove, under mild conditions on distance 

functions G and whatever the choice of variable y, that:

• namely, all Calibration estimators converge in probability to the GREG 

estimator when the sample size grows

• Therefore, as a consequence of GREG properties, we can expect that 

a calibration procedure will yield efficient estimates provided that the 

auxiliary variables explain/predict well the study variable(s)

• Notice also that, being GREG asymptotically unbiased, the same will 

hold true for every calibration estimator, no matter how badly one can 

choose the auxiliary variables:
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GREG: Useful Alternative Expressions

• HT + Regression Adjustment

• Population Projection of Predictions + Residuals

• Calibration Weighted Total
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Estimating Calibration Estimators Variance (1/4)

• Till now we learned that both Calibration and GREG estimators are 

nearly unbiased and more efficient then HT

• Anyway we still must face the problem of estimating their variance 

(otherwise we cannot build meaningful confidence intervals around 

estimates)

• Both estimators are non linear functions of sample membership 

indicators, so an exact variance formula cannot be obtained

• Taylor linearization technique is widely used to provide approximate 

variance formulas for nonlinear estimators:

1) A complex function of HT estimators get expanded in power series 
around expected (=true) values till first order

2) Higher order contribution to variance are discarded, even without 
any warranty that their importance is actually negligible

3) Usual variance formulas for HT estimators are applied to the 
linearized estimator
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Estimating Calibration Estimators Variance (2/4)

• By adding and subtracting β wherever you get it’s estimator in GREG 

formula, GREG can be re-expressed as:

• First term is a constant not contributing to sampling variance, third term 

can be proved to be of smaller order compared to the second, which 

equals the HT estimator of the population sum of residuals to the 

census least-squares fit of model ξ. Thus:

• Because we don’t know β we must substitute population residuals Ek

with their sample estimates ek. At the end we obtain:
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Estimating Calibration Estimators Variance (3/4)

• Although our last formula gives a good variance estimator, a better one 

has been proposed by Sarndal (1982):

• Notice that it relies on GREG “calibrated” weights, which (as we 

already stressed) are complex functions of direct weights d=(d1,…,dn)

• Notice also that above formula equals the ordinary HT variance 

estimator for the population total of the g-expanded residuals:

• Last remark explains why this formula is so widely used in survey 

analysis software: it allows you to use your ordinary HT variance 

estimation program on the new linearized variable gk ek= ( wk /dk ) ek
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Estimating Calibration Estimators Variance (4/4)

• Once we have our preferred variance estimator for GREG, we can 

directly use it also for Calibration estimators (again by means of 

asymptotic equivalence) 

• The final cookbook recipe for estimating Calibration estimators 

variance is as follows:

1) Solve by a computer program your calibration problem; take at 
hand the calibration weights wk

2) Compute weighted regression coefficients by projecting your 
interest variable y on the auxiliary variables x1,…, xq and using 
direct weights dk

3) Use regression coefficients from step 2) to compute estimated 
residuals ek; use calibration weights from step 1) to compute g-
expanded residuals gk ek= ( wk /dk ) ek

4) Treat the g-expanded residuals from step 3) as an ordinary 
variable of interest; compute its total’s variance letting do the work 
to your ordinary HT variance estimation program
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Calibration Metrics

• Back to the Calibration Problem: the most popular distance functions 
are Euclidean (aka Linear), Logarithmic (aka Raking) and Logit. Each 
one leads to calibration weights with their own distinctive features

• Euclidean distance

• If bounds constraints are not imposed, the Euclidean (or Unbounded 
Linear) distance leads to Calibration Estimators identical to GREG

• Calibration weights can sometimes be less than 1 or even negative; for 
estimation purposes this is not a problem, though it may seem strange 
to naive users

• Anyway it is possible to search for g-weights falling in a given interval 
0≤L<U<∞ by simply truncating the Euclidean distance (obtaining thus 
the Bounded Linear distance)

• Remember that imposing additional bounds constraints can sometimes 
prevent from finding a numerical solution to the Calibration Problem
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Unbounded Linear Calibration (1/2)

• Euclidean unbounded distance:

• allows to get an analytic closed-form solution to the calibration 

problem:

• Introducing a set of Lagrange multipliers (1 for each auxiliary variable) 

one is led to the unconstrained minimization of a new function Q:

• Setting to zero first derivatives of Q w.r.t. wk and λj one obtains:
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Unbounded Linear Calibration (2/2)

• Substituting first equation into second (via wk=gk dk) one gets for λ:

• Above equation can be expressed in matrix notation as follows:

• where:

• So that the following expression for λ stems:

• And finally the g-weights formula reads:

• It is easy to recognize this is equal to the GREG g-weights expression
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Raking and Logit Calibration  (1/2)

• Raking distance

• Logit distance

• For both above distances one cannot end up with an analytic closed-

form expression for the calibration weights. Anyway it is easy to prove 

that the following implicit formula holds for the g-weights:

with λ implicitly defined by the calibration constraints

• Given its central role, the function F, namely the inverse of G’s first 

order derivative, is called the Calibration Function
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Raking and Logit Calibration  (2/2)

• Notice that the Calibration Function associated to the Euclidean 

distance is F(u)=1+u, thus making clear the origin of the ‘Linear’ alias

• For the Raking distance you get F(u)=eu, hence calibration weights are 

surely positive. Because same weight may be found to be 

unexpectedly larger than the others, sometimes the Bounded Raking 

distance is preferred

• The ‘Raking’ alias comes from the fact that, when known population 

totals are the marginal distributions of two categorical variables, you 

end-up with the Raking Estimator

• The Logit distance automatically builds g-weights constrained to fall 

into the interval -∞<L<U<∞

• For that reason Logit Calibration is a very popular choice in National 

Statistical Agencies (mainly in Europe): it helps to control the size of 

calibration weights, hence allowing those weights to be used in a wide 

variety of statistical analyses
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Calibration Metrics and g-weights Features
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Calibration Estimators: Familiar Examples (1/4)

• Suppose the Euclidean unbounded metric is selected, so g-weights 

are:

• we want to derive explicitly the expressions of calibration estimators for 

some simple auxiliary information

• Total number of units in the population

• This is the simplest case of auxiliary information, the only auxiliary 

variable being xk=1 for all k, thus:

• and the calibration estimator looks as Hajek ratio estimator of the total:

• Notice that, for SRSWOR, calibration and HT estimators are the same 

because direct weights perfectly estimate N
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Calibration Estimators: Familiar Examples (2/4)

• Population counts in a one-way classification

• Population U is partitioned in P non overlapping and exhaustive 

subpopulations Up with  p=1,…,P. The total number of units Np

belonging to every subpopulation p is known

• The auxiliary vector can be represented as follows:

• T is a diagonal PxP matrix whose p-th diagonal element equals the HT 

estimator of the total of units in subpopulation Up:

• The only contribution to the matrix product T-1 xt
k arises from the only 

nonzero component of xk, namely the one referring to the 

subpopulation p(k) to which unit k belongs
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Calibration Estimators: Familiar Examples (3/4)

• Thus one obtains:

• that is calibration amounts to rescaling direct weights by factors 

depending only on the subpopulation. The resulting estimator has the 

same expression as the Post-stratification Estimator:

• that is a sum of partition means estimators, each weighted by the 

known partition total

• For SRSWOR, denoting by np the sample units belonging to the p-th

partition subset sp, we get:
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Calibration Estimators: Familiar Examples (4/4)

• Total of a single numeric variable

• Population total X of a single numeric variable x (e.g. income) is 

supposed to be known. This time T equals the HT estimate for the 

population total of x2, thus:

• so that the calibration estimator is:

• The latter expression is easily recognized as the GREG for a model 

with only one predictor and no intercept:
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Effects of Nonresponse on Estimates (1/5)

• Till now we supposed that survey variables were observed for all the n

units belonging to the selected random sample s

• In real surveys this is almost never the case: due to the nonresponse 

phenomenon we can actually collect information only on m < n units 

belonging to a subset r of the planned sample s

Target population U

size N

Nonresponse set s-r

size n-m

Response set r

size m

Selected sample s

size n
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Effects of Nonresponse on Estimates (2/5)

• The response set r (as well as the nonresponse set s-r) is a random 

set. It can be thought as the outcome of two subsequent random 

experiments:

1) Sampling phase: select a random sample s from U under the 
given design

2) Response phase: for each unit k in s include it into r with a 
specified response probability φk

• Response probabilities are unknown, if they were not we could easily 

modify our previous theoretical results to deal with nonresponse

• The simple rule would be: substitute everywhere sample inclusion 

probabilities πk with response set inclusion probabilities pk:

• This rule would lead e.g. to the two-phase extension of HT estimators:
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Effects of Nonresponse on Estimates (3/5)

• What would happen if, being response probabilities unknown, we 

simply keep using old theory in analyzing a real survey?

• This would lead to many undesired effects, the worst being 

nonresponse bias

• Understanding how nonresponse bias can arise is simple:

- nonresponse probability is not uniform over population units: it is 
higher for units belonging to specific subpopulations (e.g. in social 
surveys, for older persons, metropolitan residents, 0)

- subpopulations which have, on average, higher nonresponse rates 
will be under-represented in the response set compared to what 
would happen in the sample

- thus standard HT estimates for the size of those subpopulation will 
be downward biased

- HT estimates for variables that covary with the ones defining high 
nonresponse subpopulations will be biased too (under-estimated or 
over-estimated depending on whether they are positively or 
negatively correlated)
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Effects of Nonresponse on Estimates (4/5)

• A useful (though somewhat unrealistic) example of nonresponse bias:

- Suppose you want to estimate the total income I for population U

- Suppose you are sampling by SRSWOR from a population 
containing nearly the same number of males and females, Nm ~ Nf

- Suppose nonresponse probability for males is significantly higher 
than for females (say twice, φm = φf / 2 )

- Suppose also that incomes are higher, on average, for males than 
for females (say twice, Im / Nm ~ 2 If / Nf )

- How much bias would you expect if you decide to use a standard 
HT estimator?
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Effects of Nonresponse on Estimates (5/5)

• Another effect of nonresponse is a loss of efficiency in estimates: 

variance is increased due to the reduction of the effective sample size

• The latter may be considered a minor disturbance compared to 

nonresponse bias

- we could fight nonresponse variance simply by some degree of 
‘over-sampling’, at the price of some additional data collection 
cost

• Thus we are left with the following conclusion:

- nonresponse affects all real-word surveys

- nonresponse bias is its most dangerous drawback

- trying to reduce nonresponse bias is mandatory

- to do this we must modify our previous (ideal) design-based 
survey theory

- we have to understand how to modify it
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Reducing Nonresponse Bias: How? (1/2)

• As we said, we must change our previous theory in order to reduce 

nonresponse bias

• This can be done in 2 ways, both relying on auxiliary information:

- The two-phase approach: exploit auxiliary information to estimate 
(i.e. model) unknown response probabilities

then use two-phase extended HT estimators

- The calibration approach: exploit auxiliary information and 
nonresponse patterns to identify ‘good calibration variables’

then use calibration estimators to reduce both estimators variance 
and nonresponse bias
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Reducing Nonresponse Bias: How? (2/2)

• Comparing 2P and CAL estimators one can find a link between the 

two techniques:

- calibration g-weights can be thought as proxy-values for inverse 
response probabilities:  gk= wk/dk → 1/ φk

• The two-phase approach has been very popular in the last 30 years 

but today the calibration approach is generally preferred

• The most important advantages of the CAL approach over the 2P one 

are the following:

2P

- it is necessary to explicitly build a nonresponse model and then to use it 
to estimate nonresponse probabilities

- a subsequent calibration step is required to increase estimators efficiency

CAL

- a good description of the nonresponse mechanism in terms of correlated 
variables is enough

- a single calibration step can reduce both nonresponse bias and 
estimators variance
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The Response Homogeneity Group Model (1/3)

• The Response Homogeneity Group model (RHG) is perhaps the most 

popular implementation of the 2P approach to nonresponse bias 

reduction

• RHG key assumption is that the population consists of non-overlapping 

subpopulations (the Groups) such that:

- all units within each group respond with the same probability

- different groups may have different response probabilities

- response/nonresponse outcomes are independent for all the units

• In formulas:
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The Response Homogeneity Group Model (2/3)

• The modeling effort for the RHG model lies in the problem of forming 

groups Gj that give nearly constant response probability Φj within each 

group

• Those groups must be built with the aid of some auxiliary variables, 

whose values we have to know, at least, for every unit belonging to the 

planned sample (thus also for nonrespondents)

• Moreover since response probabilities are unknown, groups get formed 

by using observed response rates inside groups as estimates:

• From the above formulas one recognizes that under the RHG model 

(and given the actual response rates for the groups) the response set 

is seen as Stratified SRSWOR sample drawn from the planned 

sample, with strata given by the Groups










∩=∩==

==

∈∀

    sGn   and   rGm      wherenmΦ

estimated   Φ       unknown    Φ 

Gk

jjjjjj

j

j

k

j

k

j

/ˆ

ˆϕ̂ϕ a

Diego Zardetto, Estimation Theory for Sample Surveys60



The Response Homogeneity Group Model (3/3)

• Very often Groups for the RHG model are built by collapsing in some 
‘smart’ fashion real design-strata

• Here ‘smart collapsing’ means a collapsing such that the overall 
response rates inside each obtained Group are found nearly constant

• A technique used in Istat for the survey on the small and medium 
enterprises (PMI) is as follows:

a) Compute response rates inside real design-strata (since strata are a 
big number, some of those rates may be 0 due to nonresponse)

b) Compute the deciles of the distribution from point a) and classify 
enterprises inside the 10 obtained cells

c) Treat enterprises belonging to each cell as a distinct RHG group

d) Attach to each enterprise an estimated response probability        
given by the overall response rate for its group

• At the end, each enterprise gets a new nonresponse adjusted weight:

• This weight is further used as an initial weight in a subsequent 

calibration step (whose major aim is variance reduction)

kkk dw ϕ̂/~ =

kϕ̂

Diego Zardetto, Estimation Theory for Sample Surveys61



Handling Nonresponse by Calibration (1/2)

• To understand why calibration should succeed in reducing nonresponse 

bias, one has first to define when calibration variables are ‘good’

• A good auxiliary vector (to calibrate on) should be one that:

a) is able to explain the variation of response propensity

b) covaries with the main study variables

c) Identifies the most important estimation domains

• Fulfilling requirement a) is of crucial importance for achieving an 

effective reduction of nonresponse bias for all possible variables of 

interest

• Property b) is the basic condition (already discussed) to ensure a 

variance reduction when using calibration estimators; it also helps to 

remove the nonresponse bias for the covariates (a smaller set of study 

variables)

• Principle c) gives a contribution to both bias and variance reduction in 

domain estimates
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Handling Nonresponse by Calibration (2/2)

• Because nonresponse mechanism is unknown, it is impossible to 

prove theoretically that requirement a) will do the job

• Anyway Monte Carlo simulation studies (in which nonresponse is fully 

under control) give strong support

• To get an intuitive insight of why should requirement a) work one can 

think as follows:

- calibrating on variables that are strongly correlated with 
(non)response behavior exactly removes nonresponse bias from 
the estimates of the population totals of the auxiliary variables

- thus it is likely (actually true for most of the practical applications) 
that calibration at least decreases nonresponse bias for study 
variables covarying with the auxiliary ones
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Different Levels of Auxiliary Information (1/2)

• When using calibration to fight nonresponse bias, 2 distinct levels of 
auxiliary information can be used

• Info-U

- the population total of variables  x = ( x1,…, xq  ) is known:

• Info-S

- auxiliary variables values are known for every unit belonging to the 
selected sample (thus also for nonrespondents), so one can 
compute:

• In both cases the values of the auxiliary variables xk must be known for 
every respondent unit k belonging to the response set r

• When powerful auxiliary information is available, it is also possible to 
mix InfoU and InfoS variables: the resulting vector can be denoted as 
Info-US
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Different Levels of Auxiliary Information (2/2)

• When we discussed calibration as a tool to gain precision we only dealt 

with auxiliary information of the Info-U kind

• Info-S is something new: we are using XS as it was a population total 

while it is actually an HT estimate (though an estimate built by using 

both respondents and nonrespondents)

- the key point is that calibrating the respondent weights on an 
unbiased estimate of a population total (which XS is) turns to be 
enough to soften nonresponse bias

• Notice that Info-S calibration will be less effective then Info-U in 

decreasing estimators variance, since some additional variability is 

introduced into the calibration constraints via the benchmark values XS

• For this reason, after having performed an Info-S calibration step to 

handle nonresponse bias, almost always a subsequent Info-U 

calibration step is carried out to gain efficiency 
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1-Step Calibration vs 2-Step Calibration  (1/2)

• The calibration problem for Info-U and Info-S reads:

• When auxiliary information fulfills simultaneously all conditions a) b)
and c), the solution of the above problem can achieve the goal of 
reducing both nonresponse bias and variance

• After this one-step calibration (CAL1S) procedure the final weights will 
be simply:

• Otherwise, when only condition a) holds a subsequent calibration is 
required to gain efficiency (no matter if you are using Info-U or Info-S)

• This leads to the widely diffused two-step calibration technique
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1-Step Calibration vs 2-Step Calibration  (2/2)

• The two-step calibration (CAL2S) technique is summarized as follows:

- Step1. Calibrate direct weights to reduce nonresponse Bias

- Step2. Calibrate Step1 output weights to reduce estimators

Variance

• CAL2S final weights will be:

• Notice that CAL2S final weights will satisfy exactly only Step2
calibration constraints, while slightly violating those imposed in Step1

• This ‘soft’ violation of Step1 calibration constraints can be shown to 
have only a negligible impact: nonresponse bias doesn’t resurrect 
anymore

• Notice also that, for the same given set of auxiliary variables, CAL2S
shows a big advantage over CAL1S, namely it needs a substantially 
lower computational burden (indeed complexity of calibration 
algorithms grows more than linearly with the number of auxiliary 
variables)

• As a consequence, CAL2S is sometimes preferred to CAL1S even 
when powerful auxiliary information fulfilling a) b) and c) is available
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Estimating 2-stage Variance in Practice (1/2)

• Under 2-stage stratified cluster sampling without replacement and 

equal inclusion probabilities, HT variance estimator formula has 

general structure

• where:

- is the sampling fraction of PSUs in stratum strat

- is the sampling fraction of SSUs inside sampled PSU psu

- stands for the weighted total of y inside cluster clus

- the functional form of νi depends on the adopted sampling scheme 
at stage i

• This formula can be computed by representing the sample as a tree 

and then summing all the contribution attached to its nodes
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Estimating 2-stage Variance in Practice (2/2)

sample
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Calibration with Heteroskedasticity (1/5)
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Calibration with Heteroskedasticity (2/5)

• A more general version of the calibration problem can 
incorporate a set of multiplicative factors ck inside the distance 
function

• Such ck factors must be:

- Strictly positive

- Uncorrelated with direct weights dk

• Most applications will use ck = 1 for all sample units k, which 

leads back to the ordinary calibration problem

- This is generally the standard choice in social surveys

• The final effect of using any nontrivial (i.e. non-constant) set of ck

values will be that:

on average, calibrated weights wk of units with higher values of 

ck will tend to stay closer to their corresponding initial weights dk

than would happen for units with lower ck
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Calibration with Heteroskedasticity (3/5)

• Thus, with a smart choice of factors ck, we may try to prevent the 

calibration algorithm to change too much the weights of selected 

influent units

- This opportunity is often exploited in enterprise surveys

• Interest variables in enterprise surveys may be highly skewed, so that 

few big firms can account for a significant fraction of the population 

total Y

• Even if these big firms are censused, i.e. their direct weight is 1, 

calibration could inflate their weight, thus generating influent outliers, 

which could impair estimation

• To contrast this risk, a good choice is to use the “enterprise size” (e.g. 

as measured by the number of employees) to set the ck values:

( ) ( )big is w  AND  big is y   k kk:

kk empnumc =
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• To understand why the ck are called heteroskedasticity factors one has 

to resort to the GREG

• Indeed, if the linear assisting model ξ underlying the calibration problem 

is heteroskedastic

• the GREG estimator for the total of y still reads:

• but now the estimator for β has the Generalized Least Squares 

expression:

• where C is the diagonal matrix of the ck
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• Since the weighted estimator of β is still linear in y, the GREG can still 

be expressed as a weighted sum of yk:

• but now the g-weights explicitly depend on the heteroskedasticity

factors ck :

• Now it’s easy to prove that Unbounded Linear Calibration with 

nontrivial ck values yields exactly the same g-weights as the 

Heteroskedastic GREG expression above

• Similarly, for Raking and Logit distances nontrivial ck values imply:
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Calibration with Heteroskedasticity (5/5)
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The Ratio Estimator as a Calibration Estimator

• The Ratio Estimator of the Total long predates the theory of Calibration

• It exploits as auxiliary information the population total X of a single 

numeric variable x which is believed to be positively correlated with the 

interest variable y

• Interestingly enough, while the Ratio Estimator can be shown to be a 

specific case of Calibration, this necessarily requires a heteroskedastic 

calibration model, with c
k
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Taylor Linearization Variance in a Nutshell (1/3)

• Complex population parameter, non linear function of population totals

• Natural estimator (generally biased): same function of HT estimators

• Expand it by Taylor series to first order around true totals Y=(Y1,…,Ym)

• Using explicit expressions for HT estimators you get

• Here const means constant (maybe unknown) terms not depending on 
the sample. Notice that the linearized estimator is unbiased for θ
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Taylor Linearization Variance in a Nutshell (2/3)

• Now you are left with the problem of estimating the variance of an HT 

estimator for the total of a new variable z, namely the linearized 

variable derived by θ (aka Woodruff transform)

• Because the linearized variable depends on unknown population totals, 

it must be substituted with the same expression computed using 

sample estimates

• So you end with the approximate variance estimator
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Taylor Linearization Variance in a Nutshell (3/3)

• Notice that the linearized variable associated to a complex estimator 

can also be expressed as follows:

• i.e. it equals the total derivative of the complex estimator w.r.t. the 

direct weights, evaluated at d=(d1,…,dn)

• This formula can be useful whenever it’s easier to think the complex 

estimator as a complex function of direct weights, rather then of HT 

estimators. GREG and Calibration estimators are good examples
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Taylor Linearization Examples

• Ratio Estimator (numerator and denominator are both supposed HT 

estimators)

• corresponding linearization variable (Woodruff transform)

• Ratio Estimator of a Total (population total X for the denominator 

variable is supposed to be known from external sources)

• corresponding linearization variable (Woodruff transform)
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Exercise: GREG Taylor Linearization (1/2)

• Start with GREG estimator expressions

• using available formulas for the regression coefficients estimator

• first obtain g-weights expression

• then compute explicitly GREG linearization variable (a là Woodruff)
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Exercise: GREG Taylor Linearization (2/2)

• start computing the derivative of gj w.r.t. dk

• then compute the derivative of T w.r.t dk

• lastly substitute and simplify to get final result

• Above expression leads directly to Sarndal proposal for the GREG 

variance estimator
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