
An introduction to R: Data objects manipulation

Diego Zardetto – pag. 1

An Introduction to Calibration Techniques in Sample Surveys

May 23-26 2016, ADB, Metro Manila, Philippines

An introduction to R:

Data objects manipulation

Diego Zardetto
World Bank STC for research

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 2

The R objects used to store data structures are:

vector: vector (NOT algebraic)

factor: (vector for categorical variables)

matrix: matrix

array: multi-dimensional data object

list: list

data.frame: list organized as a matrix (units x variables)

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 3

Vector

The R vector is NOT the algebraic vector (column vector).

In R a vector is the simplest data object: it is an ordered collection of

elements of the same type (numbers, character strings, logicals…).

There are five types of vector, according to the values they store:

Values in the Attributes

vector mode class storage mode

Integers numbers "numeric" "integer" "integer"

Real numbers "numeric" "numeric" "double"

Txt string "character" "character" "character"

Logical "logical" "logical" "logical"

Complex numbers "complex" "complex" "complex"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 4

vector of numbers (integer or real numbers)

The function c()combines (concatenates) the arguments to form an R
vector

> x <- c(1, 2, 3, 4, 5, 6)

> x
[1] 1 2 3 4 5 6

> length(x)
 6

> mode(x)
[1] "numeric"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 5

c() admits an arbitrary number of objects; as arguments can have others

R vectors

> y <- c(x, 10, x) #x then a “10” and then x again
> y
 [1] 1 2 3 4 5 6 10 1 2 3 4 5 6

c() can be used to concatenate two existing vectors (of the same type)

> x <- c(1,2,3,4)

> y <- c(10, 20, 30)

> z <- c(y, x)
> z
[1] 10 20 30 1 2 3 4

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 6

Sequences of integers

> x <- 1:4 #the same as x<-c(1,2,3,4)

> x <- 4:1 # x<-c(4,3,2,1)

The function rep() is very useful

> rep(3, 6) #repeats 6 times the value 3

> rep(1:3, 2) #repeats 2 times the vector 1:3

> rep(1:3, each=2) #repeats 2 times each elem. of 1:3

> rep(1:3, 4:2) #repeats 1 4 times, 2 3 times and 3 2

 times

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 7

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 8

Sequences of real numbers can be created with seq()

> x <- seq(from=1, to=10, by=0.5)
> x
 [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

> x <- seq(1,3,0.2)
> x
 [1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 9

vector of logicals

It is a vector whose elements are “TRUE” (T or 1) and/or “FALSE” (F or 0)

> x <- c(1:3, NA)
> x
[1] 1 2 3 NA

> y <- is.na(x)
> y
[1] FALSE FALSE FALSE TRUE

> length(y)
[1] 4

> mode(y)
[1] "logical"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 10

vector of TXT strings

> x <- c("a", 'b')
> x
[1] "a" "b"

> length(x)
[1] 2

> mode(x)
[1] "character"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 11

The function nchar() counts the number of characters of each string in

the vector

> x <- c("Mick","Jagger","a", '', ' ')
> nchar(x)
[1] 4 6 1 0 1

The function paste() combines character/numbers to form complex

strings

> paste("VAR", 1:4, sep="")
[1] "VAR1" "VAR2" "VAR3" "VAR4"

> paste("VAR", 1:4, sep=".")
[1] "VAR.1" "VAR.2" "VAR.3" "VAR.4"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 12

Some useful functions to deal with txt strings:

substring() #selects pieces of string using position

tolower() #converts to lower cases

toupper() #converts to UPPER CASES

match() #searches for a string in a vector

grep() #as before but admits partial matches

pmatch() #search for a (even partial) match starting

#from the beginning of the strings

sub() #substitutes a piece of a string

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 13

%in% returns a logical vector indicating the presence of a
string in a vector

Es.
> x <- c("R", "course", "in", "Manila")
> match("R",x)
[1] 1

> match("Man",x)
[1] NA

> match("Manila",x)
[1] 4

> pmatch("Man",x)
[1] 4

> pmatch("ila",x)
[1] NA

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 14

> grep("ila",x)
[1] 4

> "R" %in% x
[1] TRUE

> c("R","course","Philippines") %in% x
[1] TRUE TRUE FALSE

> x<-c("January","February")
> substr(x,1,3)

[1] "Jan" "Feb"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 15

Selecting elements of a vector

The elements of a vector can be selected by referring to their position in

the vector:
name_vector[position]

> mon <- month.abb
> mon
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"
 [10] "Oct" "Nov" "Dec"

> mon[6] #element in pos. 6
[1] "Jun"

> mon[-6] #the element in pos. 6 is dropped
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jul" "Aug" "Sep" "Oct"
 [10] "Nov" "Dec"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 16

> mon[1:6] # first 6 elements of mesi
[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun"

> mon[-(1:6)] #excludes the first 6 elements of mon
[1] "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

> mon[c(2,4,6)] #2nd,4th and 6th element from mon
[1] "Feb" "Apr" "Jun"

> mon[-c(2,4,6)]
[1] "Jan" "Mar" "May" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

> mon[c(2,4,1,2)]
[1] "Feb" "Apr" "Jan" "Feb"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 17

The selection of elements of a vector can be done according to given

conditions

> x <- 1:8

> y <- x>6
> y
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

> x[y]
[1] 7 8

The same result can be obtained by typing directly:

> x[x>6]
[1] 7 8

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 18

Logical operators:

“==” equality

“>” greater

“>=” greater or equal to

“<” lower

“<=” lower or equal to

“!” NOT

> x <- c(NA, 1:4, NA)
> x
[1] NA 1 2 3 4 NA

> y <- x[!is.na(x)]
> y
[1] 1 2 3 4

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 19

Arithmetic operations with numeric vectors

The arithmetic operation involving two vectors are carried out element by

element

> y <- runif(4)
[1] 0.97125301 0.28373228 0.04466238 0.51412020

> y+10
[1] 10.97125 10.28373 10.04466 10.51412

> y*10
[1] 9.7125301 2.8373228 0.4466238 5.1412020

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 20

> x<-1:3; y<- c(1,10,100)
> x*y
[1] 1 20 300

* much care should be used when vectors of different length are

involved

> x<-1:5
> length(x)
[1] 5
> y<-c(1,10,100)
> length(y)
[1] 3
> x*y
[1] 1 20 300 4 50
Warning message:
longer object length
 is not a multiple of shorter object length in: x * y

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 21

In practice, R completes the operation by recycling the shortest vector

in order to obtain a vector of the same length of the other one.

Note that the warning message does NOT appear when the length of the

vector is a multiple of the length of the other one

> x <-1:6
> y
[1] 1 10 100
> x*y
[1] 1 20 300 4 50 600

The same as:

> x*c(y, y)

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 22

Some useful mathematical functions are:

log10, log, exp, sin, cos, tan, sqrt, abs, round, min, max

others useful functions:

> sum(x) #sum the elements of x
[1] 112.3

> prod(x) #product of the elem. of x
[1] 121.2

> x <- c(1.2, 0.1, 10, 101)
> range(x) #the same as c(min(x), max(x))
[1] 0.1 101.0

> mean(x) #average of the elements of x
[1] 28.075

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 23

Note that formulas in R can be written as they are found in the textbooks

Ex.: ()∑ =
−

n

i i
xx

1

2

> sum((x-mean(x))^2)
[1] 7149.627

> var(x) #sample variance
[1] 2383.209

> sd(x) #standard deviation
[1] 48.81812

> median(x) #median
[1] 5.6

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 24

> quantile(x, 0.25) #1st Quartile
 25%
0.925

> quantile(x, c(0.25,0.75)) #1st and 3rd Quartile
 25% 75%
 0.925 32.750

> summary(x)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.100 0.925 5.600 28.070 32.750 101.00

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 25

factor objects

A factor is vector that handles categorical variables (e.g. sex, education

level, …). It stores the observed values, the admissible values and the

eventual labels. Notice that the order of the levels is important!

> sex <- factor(c("M","F","M","F","F"))
> sex
[1] M F M F F
Levels: F M
> sort(sex)
[1] F F F M M
Levels: F M

> sex <- factor(c("M","F","M","F","F"), levels=c("M","F"))
> sex
[1] M F M F F
Levels: M F

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 26

> sort(sex)
[1] M M F F F
Levels: M F

> sex <- factor(c("M","F","M","F","F"), levels=c("M","F"),
 labels=1:2)
> sex
[1] 1 2 1 2 2
Levels: 1 2

ordered factors

The ordered factor is the R structure appropriate to handle ordered

categorical variables. Many functions (e.g. comparison operators or linear

models treat ordered and unordered factors differently)

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 27

> education<- factor(c("phd","elementary","degree",
 "high-school","bachelor","degree"))
> education
[1] phd elementary degree high-school bachelor degree
Levels: bachelor degree elementary high-school phd

> education.ord <- ordered(education,
 levels=c("elementary","high-school",
 "bachelor","degree","phd"))
> education.ord
[1] phd elementary degree high-school bachelor degree
Levels: elementary < high-school < bachelor < degree < phd

> education.ord[1] > education.ord[2]
[1] TRUE

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 28

> length(sex)
[1] 5

> mode(sex)
[1] "numeric"

> class(sex)
[1] "factor"

> levels(sex)
[1] "M" "F"

> nlevels(sex)
[1] 2

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 29

Remark.

By default NA (missing) is excluded from the levels of the factor:

> sex <- factor(c("M","F","M","F","F",NA),
levels=c("M","F",NA))

> sex
[1] M F M F F <NA>

Levels: M F # Levels are only M,F try to use table()

sex <- factor(c("M","F","M","F","F",NA),
levels=c("M","F",NA),exclude=NULL)

> sex
[1] M F M F F <NA>

Levels: M F <NA> # Now level NA is there too, try to use table()

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 30

A factor is the output of the function cut() used to categorize a

continuous variable

 cut(x, breaks, labels = NULL,
 include.lowest = FALSE, right = TRUE, ...)

default intervals are (argument right = TRUE): (a1,a2], (a2,a3], …

(a1, a2] means a1 < x <= a2

> x <- 1:8
> fx <- cut(x, c(1,4,8))
> class(fx)
[1] "factor"

> fx
[1] <NA> (1,4] (1,4] (1,4] (4,8] (4,8] (4,8] (4,8]
Levels: (1,4] (4,8]

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 31

> fx <- cut(x, c(1,4,8), include.lowest=T)
> fx
[1] [1,4] [1,4] [1,4] [1,4] (4,8] (4,8] (4,8] (4,8]
Levels: [1,4] (4,8]

> fx <- cut(x, c(1,4,8), include.lowest=T,
+ labels=c("1-4", "5-8"))
> fx
[1] 1-4 1-4 1-4 1-4 5-8 5-8 5-8 5-8
Levels: 1-4 5-8

The importance of a factor comes out in building contingency tables.

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 32

The matrix object

A matrix is a collection of elements, of the same type, organized in two

dimensions, rows and columns.

The function matrix() is the common way to build a matrix. The

following assignment defines a matrix of 0s, with 10 rows and 2 cols.

> x <- matrix(0, nrow=10, ncol=2)

> mode(x)
[1] "numeric"

> class(x)
[1] "matrix"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 33

> dim(x) #dimensions of the matrix
[1] 4 2

> length(x) #no. of elements in x
[1] 8

> nrow(x) # no. of rows
[1] 4

> ncol(x) # no. of cols
[1] 2

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 34

> x <- matrix(1:8, 4, 2)
> x
 [,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8

NOTE the matrix is filled in by columns!!!

By using the argument byrow=T, the matrix is filled in by rows:

> x <- matrix(1:8, nrow=4, ncol=2, byrow=T)
> x
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 35

When the length of the vector is smaller than the length of the matrix,

the matrix is filled by recycling the starting vector

> x <- matrix(1:5, 4, 2)
Warning message:
data length [5] is not a sub-multiple or multiple of the
number of rows [4] in matrix
> x
 [,1] [,2]
[1,] 1 5
[2,] 2 1
[3,] 3 2
[4,] 4 3

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 36

In R the algebraic vector is a matrix object with only a column, that can

be created by simply typing:

> X <- matrix(1:4)
> X
 [,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4

> dim(X)
[1] 8 1

> class(X)
[1] "matrix"

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 37

The selection of the elements of a matrix can be done by referring to

their position in rows and columns:

name_mat[row_pos, col_pos]

> x<- matrix(1:8, 4, 2)
> x
 [,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8

> x[4,2] #selects the element in 4th row and 2nd column
[1] 8

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 38

> x[4,] #all the elements in the 4th row
[1] 4 8

> x[,2] #all the elements in the 2nd column
[1] 5 6 7 8

> x[c(1,4),] #elements in the 1st and 4th row
 [,1] [,2]
[1,] 1 5
[2,] 4 8

> x[c(1,4),2] #elements in 1st and 4th row of the 2nd col.
[1] 5 8

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 39

In the same way, by using the “-” it is possible to deselect a row/col:

> x[-2,] #drops the 2nd row
 [,1] [,2]
[1,] 1 5
[2,] 3 7
[3,] 4 8

> x[,-1] #drops the 1st col
[1] 5 6 7 8

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 40

Operations with the matrix object

Adding, subtracting, multiplying or dividing a matrix by a constant is

straightforward:

> x <- matrix(1:8,4)

> x+100
 [,1] [,2]
[1,] 101 105
[2,] 102 106
[3,] 103 107
[4,] 104 108

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 41

> x/10
 [,1] [,2]
[1,] 0.1 0.5
[2,] 0.2 0.6
[3,] 0.3 0.7
[4,] 0.4 0.8

> 1/x #is NOT the matrix inversion
 [,1] [,2]
[1,] 1.0000000 0.2000000
[2,] 0.5000000 0.1666667
[3,] 0.3333333 0.1428571
[4,] 0.2500000 0.1250000

In this case, a matrix of the same dimension of the original one is created;

each element of the new matrix is the reciprocal of corresponding element

in the origin matrix.

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 42

> x^2 #is NOT the matrix product xx
 [,1] [,2]
[1,] 1 25
[2,] 4 36
[3,] 9 49
[4,] 16 64

The same happens for the square root:

> sqrt(x)
 [,1] [,2]
[1,] 1.000000 2.236068
[2,] 1.414214 2.449490
[3,] 1.732051 2.645751
[4,] 2.000000 2.828427

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 43

In operation involving two matrices (of the same dimension) the operation

is performed element by element

> y <- x+100
> y
 [,1] [,2]
[1,] 101 105
[2,] 102 106
[3,] 103 107
[4,] 104 108

> x + y #sum element by element
 [,1] [,2]
[1,] 102 110
[2,] 104 112
[3,] 106 114
[4,] 108 116

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 44

> y <- matrix(101:108, 2)
> y
 [,1] [,2] [,3] [,4]
[1,] 101 103 105 107
[2,] 102 104 106 108

> x+y
Error in x + y : non-conformable arrays

> t(x)+y
 [,1] [,2] [,3] [,4]
[1,] 102 105 108 111
[2,] 107 110 113 116

The function t() performs matrix transposition.

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 45

Care should be used in operations involving matrices and vectors

> y <- 1:4
> y
[1] 1 2 3 4

> x-y
 [,1] [,2]
[1,] 0 4
[2,] 0 4
[3,] 0 4
[4,] 0 4

The vector y is subtracted by each column of x.

Here again, R recycles the smaller object to obtain an object of the same

length and dimension of the bigger one:

> x - matrix(y, nrow(x), ncol(x))

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 46

> y <- 1:5
> x-y
 [,1] [,2]
[1,] 0 0
[2,] 0 5
[3,] 0 5
[4,] 0 5
Warning message:
longer object length
 is not a multiple of shorter object length in: x – y

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 47

Matrix facilities

The operator to perform matrix multiplication is “%*%”

> x <- c(4, 7, 9, 2, 7, 1)
> dim(x) <- c(2,3)
> x
 [,1] [,2] [,3]
[1,] 4 9 7
[2,] 7 2 1

> y <- c(4, 1, 5, 7, 6, 8)
> dim(y) <- c(3,2)
> y
 [,1] [,2]
[1,] 4 7
[2,] 1 6
[3,] 5 8

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 48

> z <- x %*% y
> z
 [,1] [,2]
[1,] 60 138
[2,] 35 69

Remember: z[i,j] = sum(x[i,] * y[,j])

for i=1,..,nrow(x); j=1,..,ncol(y) and ncol(x)=nrow(y).

Matrix inversion can be performed by using the solve()function.

> solve(z)
 [,1] [,2]
[1,] -0.10000000 0.20000000
[2,] 0.05072464 -0.08695652

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 49

The function diag() gives different results:

a) when applied to an existing square matrix, it selects its main diagonal:

> z
 [,1] [,2]
[1,] 60 138
[2,] 35 69
> diag(z)
[1] 60 69

b) if its argument is a number k, a square identity matrix kxk is created:

> diag(2)
 [,1] [,2]
[1,] 1 0
[2,] 0 1

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 50

c) if its argument is a vector, it returns a diagonal matrix with the

elements of the vector as the main diagonal of the matrix

> diag(1:3)
 [,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

An introduction to R: Data objects manipulation

Diego Zardetto – pag. 51

Data matrix in statistics

The matrix dimension is n x k, k numeric variables observed on n units

colSums(x) #sum of elements for each col of the matrix

colMeans(x) #average for each column of the matrix

summary(x) #summary stat. for each columns

var(x) #Var-Cov. matrix

cor(x) #correlation matrix

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 52

array object

An array is a collection of elements, all of the same type, organized in 2

or more dimensions.

array() is the main function to create it:

> x <- array(1:24, dim=c(4,3,2))

This assignment creates an array with numbers from 1 to 24, organized in

3 dimensions (length of the vector dim(x): length(dim(x))).

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 53

> x
, , 1

 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

, , 2

 [,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24

NOTE: the array is filled by column!!!!

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 54

> length(x) #no. of elements of x
[1] 24

> mode(x)
[1] "numeric"

> class(x)
[1] "array"

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 55

The selection of elements of the array can be done by referring to their

position in the dimensions:
name_array[pos_dim1, pos_dim2, …, pos_dimN]

Example:

> dim(x)
[1] 4 3 2
> x[1,2,1] # 1st el. in dim 1, 2nd el. in dim 2, 1° el. in
dim 3
[1] 5

>x[1,2,] # 1st el. in dim 1, 2nd el. in dim 2, all in dim 3
[1] 5 17
> x[1,,] # 1st el. in dim 1, all in dim 2 and dim 3
 [,1] [,2]
[1,] 1 13
[2,] 5 17
[3,] 9 21

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 56

Dimension subscripts of arrays can be permutated through aperm. It can

be useful whenever operations are required involving 2 or more arrays with

the same dimensional structure.

Es.
> y <- aperm(x,c(2,1,3))

Changes array x with dimensions 4x3x2 into array y with dimensions

3x4x2:

> dim(y)
[1] 3 4 2

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 57

> y

, , 1

 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

, , 2

 [,1] [,2] [,3] [,4]
[1,] 13 14 15 16
[2,] 17 18 19 20
[3,] 21 22 23 24

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 58

list object

A list is an ordered collection of others R data objects (vectors,

matrices, factors, lists…).

Each single object is a component of the list. A list is created through the

function list()

> fam <- list(name="Fred", wife="Mary", no.children=3,
+ child.ages=c(4,7,9))

This assignment creates a list called fam, consisting of 4 components.

> length(fam) #no. of components of the list
[1] 4

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 59

> mode(fam)
[1] "list"

> class(fam)
[1] "list"

> fam
$name
[1] "Fred"

$wife
[1] "Mary"

$no.children
[1] 3

$child.ages
[1] 4 7 9

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 60

The first component of the list is a character vector with only one

element, “Fred”, and it can be referred as fam[[1]]

> fam[[1]]
[1] "Fred"

> fam[[2]]
[1] "Mary"

> fam[[3]]
[1] 3

> fam[[4]]
[1] 4 7 9

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 61

In this case we have assigned a name to each component:

> names(fam)
[1] "name" "wife" "no.children" "child.ages"

These names can be used in selecting the components by using a structure:

name_list$name_component

> fam$wife
[1] "Mary"

> fam$no.children
[1] 3

> fam$no #if unique, only part of the name can be used
[1] 3

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 62

When selecting the components of a list by referring to their position it is

important to type the right number of square parenthesis:

> x <- fam[[4]]
> x
[1] 4 7 9
> mode(x)
[1] "numeric"

> x <- fam[4]
> x
$child.ages
[1] 4 7 9

> mode(x)
[1] "list"
> length(x)
[1] 1

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 63

Therefore structure of the type:

name_list[pos_component]

selects a “sub-list” from the starting list.

This is useful when selecting two or more components from a list:

> fam[1:2] # selects the 1st and the 2nd component
$name
[1] "Fred"

$wife
[1] "Mary"

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 64

> fam[c(2,4)] # selects the 2nd and the 4th component
$wife
[1] "Mary"

$child.ages
[1] 4 7 9

> fam[-2] #drops the 2nd component
$name
[1] "Fred"

$no.children
[1] 3

$child.ages
[1] 4 7 9

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 65

Appending a new component to the list is easy:

>fam$child.sex<-factor(c("M","F","F"), levels=c("M","F"))

A new component named “child.sex” is appended to the list.

> length(fam)
[1] 5
> fam[[5]]
[1] M F F
Levels: M F

In alternative we can refer to the position of the new component:

> fam[[6]] <- c(0,1,1)
> length(fam)
[1] 6

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 66

> fam[[6]]
[1] 0 1 1
> names(fam)
[1] "name" "wife" "no.children" "child.ages"
"child.sex" ""

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 67

Two lists can be concatenated by using the function c():

> fam1 <- fam[1:2]
> mode(fam1); length(fam1)
[1] "list"
[1] 2

> fam2 <- fam[3:5]
> mode(fam2); length(fam2)
[1] "list"
[1] 3

> FAM <- c(fam1,fam2)

> mode(FAM); length(FAM)
[1] "list"
[1] 5

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 68

The function unlist() transforms a list into a vector

> x <- unlist(FAM)
> x
 name wife no.children child.ages1
 "Fred" "Mary" "3" "4"
child.ages2 child.ages3 child.sex1 child.sex2
 "7" "9" "1" "2"
 child.sex3
 "2"

> mode(x)
[1] "character"
> length(x)
[1] 9

NOTE: Due to the presence of a character vector, all the elements of the

other components of the list are coerced to character.

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 69

data.frame object

A data.frame is a particular list: it is a list in which each component

of the list is a vector/factor of the same length. Each component of the

list is the result of the observation of a variable on the statistical units.

Due to this feature, the data.frame is organized and printed as a

matrix: each column contains the observed values for the variable on the

statistical units.

A data.frame admits at the same time numeric, logical or factor

components (columns).

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 70

A data.frame is created by means of the function data.frame()

> id <- c("001","002","003","004")
> sex <- factor(c("M","F","F","F"), levels=c("M","F"))
> age <- c(33, 25, 61, 21)

> x <- data.frame(id,sex,age)
> x
 id sex age
1 001 M 33
2 002 F 25
3 003 F 61
4 004 F 21

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 71

> length(x) #return the no. of components
[1] 3

> mode(x)
[1] "list"

> class(x)
[1] "data.frame"

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 72

Note that, by default, character vectors are coerced to factor,

> class(id)
[1] "character"
> class(x$id)
[1] "factor"

Unless the argument stringsAsFactors is set to “FALSE”

> x <- data.frame(id,sex,age, stringsAsFactors=FALSE)

> class(x$id)
[1] "character"

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 73

Given that a data.frame is list organized as a matrix, we can treat it

as a list or as a matrix:

> length(x) #return the no. of components
[1] 3

> nrow(x)
[1] 4
> ncol(x)
[1] 3
> dim(x)
[1] 4 3

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 74

The same happens when we want to select some elements of the

data.frame:

> x$age #component named “age”
[1] 33 25 61 21

> x[,"age"] #column with name “age”
[1] 33 25 61 21

> x[,3] #3rd column
[1] 33 25 61 21

> x[2,] #vales observed on the 2nd unit
 id sex age
2 002 F 25

> class(x[2,]) #NOTE it is still a data.frame
[1] "data.frame"

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 75

Adding a new column (component) to the data.frame

> q1 <- as.logical(c(1,0,1,1))
> q1
[1] TRUE FALSE TRUE TRUE
> x$q1 <- q1

> x
 id sex age q1
1 001 M 33 TRUE
2 002 F 25 FALSE
3 003 F 61 TRUE
4 004 F 21 TRUE

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 76

Adding a new row (unit) to the data.frame

Remember that each row of the data.frame is a data.frame itself.

> new.unit <- data.frame(id="005",sex="M",age=60,q1=FALSE)

> xx <- rbind(x, new.unit) #row binding
> xx
 id sex age q1
1 001 M 33 TRUE
2 002 F 25 FALSE
3 003 F 61 TRUE
4 004 F 21 TRUE
5 005 M 60 FALSE

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 77

A data.frame can be transformed in a matrix (usually a matrix with

numeric elements) thought the function data.matrix()

> y <- data.matrix(xx)
> y
 id sex age q1
1 1 1 33 1
2 2 2 25 0
3 3 2 61 1
4 4 2 21 1
5 5 1 60 0

> class(y)
[1] "matrix"

> mode(y)
[1] "numeric"

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 78

Subsetting objects by logicals

which(): given an object, finds the indices of the object’s elements

satisfying a logical condition

Vectors
> z <- c(1,2,5,12,32,27,14)

> which(z %% 2 == 0)
[1] 2 4 5 7

> z[which(z %% 2 == 0)]
[1] 2 12 32 14

 An introduction to R: Data objects manipulation

Diego Zardetto – pag. 79

When the input object has an array structure (i.e. has a dim attribute) one

can access the array indices of the elements:

> m <- matrix(sample(1:20,20,rep=TRUE),4,5)
> m
 [,1] [,2] [,3] [,4] [,5]
[1,] 6 5 15 19 19
[2,] 14 17 13 16 3
[3,] 11 9 5 3 10
[4,] 20 19 2 20 8

> which(m > 18, arr.ind=TRUE)
 row col
[1,] 4 1
[2,] 4 2
[3,] 1 4
[4,] 4 4
[5,] 1 5

