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Inference Approaches in Official Statistics

« Design-Based Inference (randomization approach)

- The reference approach in National Statistical Institutes
(NSI)

- Includes Model-Assisted methods (e.g. Calibration
Estimators) as special cases

- Naturally belongs to the Frequentist inferential framework

 Model-Based Inference (prediction approach)

- In NSls typically used to complement analyses when the
Design-Based approach would fail

= e.g. to treat Nonresponse, frame imperfections,
measurement errors, non-probability samples, ...

- Can adopt either Frequentist or Bayesian inferential
frameworks
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Design-Based Inference (1/2)

 Finite population values y;, ..., y, and parameters 6
are non-random quantities (i.e. fixed and error-free)
 Randomness arises only from probability sampling

- Samples are drawn by means of rigorously random
algorithms

- Each unit in the population has a known, non-zero
probability of being selected in the random sample

= Data sampling is entirely controlled

 l|deally, the STATISTICIAN is the one and the only
RANDOMIZER

- ldeally means ignoring all non-sampling errors (e.g. list
problems, total and item nonresponse, measurement
errors...)
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Design-Based Inference (2/2)

. Statistical properties of estimators &(s) (like bias and
efficiency) depend on the probability distribution induced
by the sampling design p(s)

- Estimators 6(s) invariably involve survey weights tied to
sample units

- weights may either depend only on the sampling design or
incorporate further auxiliary information on the target
population

« Design-Based methods allow to:

- Build unbiased estimators (or nearly so)

= even if samples are not naively representative, because we
can adjust for unequal inclusion probabilities!

- Exploit probability theory to assess the quality of obtained
estimates
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Model-Assisted Inference

« Key distinction: interest variable Y and auxiliary variables X

* Relations between Y and X are generated by Nature (i.e. by
real-world, domain-specific phenomena which are unknown)

« Auxiliary information about the target population is available
from sources external to the survey at hand

- Can use this information to describe relations between Y and X
through a statistical model

* Model-Assisted inference is a suite of methods to improve the
quality of Design-Based inferences by hinging upon available
auxiliary information in a systematic and rigorous way

- build more efficient (but still nearly unbiased) estimators

- reduce bias (from nonresponse, frame imperfections, ...)

« Note: the model is assisting only (i.e. descriptive): no stochastic
structure ever assumed!
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Model-Based Inference (1/2)

 Finite population values y,, ..., yy and parameters 6 are
realizations of random variables that follow some unknown
stochastic model (the superpopulation model)

 NATURE is the one and the only RANDOMIZER

- A statistical model is a (human interpretable) guess made by
the statistician about the true, unknown data generating
mechanism adopted by Nature

* Model-Based inference requires two steps:

1) A model condensing assumptions on the probability
distribution of Y and X, as well as on their dependency
structure, is fitted and tested against observed data

2) The fitted model is used to predict unobserved values, i.e.
values y, for units £ which do not belong to the sample:

y, unobserved — y, = y(X,) predicted
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Model-Based Inference (2/2)

 The Model-Based approach can be applied to both
probability and non-probability samples

- For non-probability samples, model-based estimation is the
only viable choice

 Model-Based inference treats the sample as fixed and
ignores the sampling design

- Strictly speaking, this is correct only for self-weighting
designs

* Model-Based methods allow to build estimators that
are unbiased under the adopted model
- No definitive protection against bias exists
- Bias can always be lurking, due to model misspecification
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Inference in Official Statistics — Pictorial Synopsis

Model-Assisted Design-Based

Model-Based

YAHT :deyk :Z(l/”k)yk

s* <+« y+{ Nature «x [~ U

kes kes
s*+| y+{ Model [—x [« U Yo =D Wy = (g,d,)v,
kes kes

kes ke (U-s) kes ke (U-s)

s*+——i y* <+ Model <—X*§<"U Y/;e:zyk+ Zﬁﬁzyzﬁ Z);(Xk)
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An Introduction to Design-Based
and Model-Assisted Analysis
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Basic Notation and Formulas (1/5)

Finite target population U of units:
U={,2,..,N}

Probability sample s drawn from U:
s={,2,..n} seS

e Sampling design:

p:S—[01] p(s)=Pr(sisselected)

First order inclusion probabilities:

m, =Pr(k < s)=) p(s)

sk

Second order inclusion probabilities:

7, =Pr({k, jics)= > p(s)

k=j:>7zkj =TT, =7,
soik,j}
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Basic Notation and Formulas (2/5)

Estimator of a population parameter 6:
0 = 0(s)
Design Expectation:

Ep(0) = 0(s)p(s)
Design I_;ii;s:
B,(0)=E,(0)-0
Design Variance:

V(@) = Ep(16-E(O)F)
Design Covariance:

Cov,(0,0,)=E, [00,—E,(0)E,(6,)]
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Basic Notation and Formulas (3/5)

* Design Mean Squared Error:
MSE(0) = E,[(6-60)*1= B, (0)" +V,(6)

« Sample Membership Indicators (random variables):

1 if kes
0, =0,(5)= . VkeU
0 if kes

* Notable relations with inclusion probabilities:
Ey(8) =2 p()5,(5)=) p(s)=7,
seS sDk
ED(5k5j) = Tty
Vp(6,)=m,(1-7,)

Cov,(6,,0,)=m, —mm, = A,
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Basic Notation and Formulas (4/5)

« Sample Membership Indicators (matrix notation):

0,(s) Ay Ay
ds)=| A=V, [8(s)]- -

5,(s) Ay e Ay

« Sample size (random, in general):

n(s) = 3,(s)

keU

* Average sample size:

Ey(n)=Y E,(&)=)

keU keU
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Basic Notation and Formulas (5/5)

* Survey variables (non-random values):

Wi Y, ) interest)  {x,,..., x,} (auxiliary )
* Observed survey data:

(ks Yirsewos Vigs Xrs s X)) kK ES
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Two Fundamental Definitions (1/2)

Sampling Design:  p:S—[0,1] p(s)=Pr(sisselected)

1) Probability Sampling Design:

VkeU w,=Pr(kcs)=E,(5,)>0

Each unit in the population must have a strictly positive
iInclusion probability

2) Measurable Sampling Design:

VkeU,VjeU  z,=Pi({k,j}cs)=E,(55,)>0

Each pair of units in the population must have a strictly positive
second order (i.e. joint) inclusion probability
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Two Fundamental Definitions (2/2)

NON-probability sampling designs

« Building unbiased estimators is impossible in a design-based
approach

- Samples can never be “representative” of the whole population, as
units with zero inclusion probability will be never selected (e.g. cut-
off sampling in business surveys)

NON-measurable sampling designs

« Building unbiased variance estimators is impossible in a design-
based approach

- Even if unbiased estimators of population parameters exist (because
of probability sampling) we will not be able to assess their precision
and build valid confidence intervals (e.g. systematic sampling)
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Goals of Design-Based Survey Sampling

« Given a sampling design, build “good estimators” of
population parameters

* A “good estimator” should be:

- Unbiased, or nearly so: substantial bias leads to poor
estimates (on average) and prevents from building valid
confidence intervals

- Efficient: small coefficient of variation (for a nearly unbiased
estimator) means that, for most samples, the estimator is
likely to produce an estimate near the true value

« Small bias and small variance are often conflicting
objectives in practice
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The Importance of Weighting

« Suppose you want to estimate the population total of variable y:
Y = ZJ’k

* If you try with the naive estimator:

i}naive = Zyk

kes

e ...you soon realize it's biased:

E(i}naive) = E(Zyk) = E(Zyk5k) = Zyk”k =Y
kes keU keU
« Removing bias is straightforward: simply introduce weighted
(aka Horvitz-Thompson, aka expansion) estimators:

YAHT = deJ’k = Z)’k(l/”k)

kes kes
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Direct Weights and HT Estimators

«  Weights appearing in HT estimators are named “direct weights”
or “design weights™:

d =1/n,

* Intuitively one can think that each sampled unit “represents” a
number of population units given by its direct weight

« HT estimators are unbiased by construction (neglecting non-

response)
B(Y) =0

* Moreover they are linear functions of sample membership
indicators, hence computing (formally) variance is easy:

V(}/}HT) = Z deykAkjdjyj

keU jeU
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Estimating HT Estimators Variance (1/2)

* Formal expression for HT estimators variance relies on whole
population, so variance true value is unknown

« Consequently to asses HT estimators efficiency we need to
estimate it from the sample...

« ...let's try again with a weighted estimator (as done before
when estimating a total):

V(YHT) szkyk[ . Y= ZZ[I_ﬂk Jkykdjyj

kes jes kes jes kj

* ltis easy to prove that above estimator (due again to Horvitz &
Thompson again) is unbiased for the variance of HT
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Estimating HT Estimators Variance (2/2)

« A more concise formula for the unbiased variance estimator of
the HT estimator of the total is as follows:

I}(YAHT) = Zzg@yky]

kes jes
where:
-y - A, T
Ve==t=y,d,  and A, =—2=]1-"
& T 7y

» For fixed-size sampling a possible, still unbiased, alternative is
due to Yates & Grundy & Sen:

A A | -
Vies(Yyr) = _EZZA@'(J’/{ _yj)2

kes jes
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A Very Important Example: SRSWOR (1/2)

 When dealing with simple random sampling without
replacement we are able to compute all previous formulas
explicitly:
NY! N -1
J , =p(s>( 1]=n/N=f 7, =p<s>(

N—2j_ n(n—1)

p(s):( n-2) N(N-I

n

kes

Yyr :deyk =N-y I/A'(};HT):N:Z%S;Z

* here fdenotes the sampling fraction (aka finite population
correction) and we used the sample mean and the sample
variance of y:

7= v /n $ =3 (-7

kes
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A Very Important Example: SRSWOR (2/2)

Note that the HT variance estimator can also be expressed as:

V(YHT) (1-5)- —Z(yk y) =n-(1- f)S2

kes
Ve =Yy dy

Most statistical software use the above formula, which can be
easily modified in order to take into account stratification and
clustering in wor sampling designs

Clusters: substitute weighted y values for units with weighted y
totals into clusters

Strata: sum over variances computed treating strata as
independent samples

The above expression is also the basic tool to build
approximate variance formulas when dealing with multistage
sampling

Diego Zardetto, Estimation Theory for Sample Surveys




Why Real-Word Surveys Are So Difficult

 Complex selection schemes

- e.g. [multiphase / multistage / stratified / cluster / pps /
systematic / wor / mixed / ...] sampling

- computing first order inclusion probabilities becomes difficult (only
approximations available for second order)

 Complex estimators

- e.g. [non linear / non analytic / model dependent / ...]

- main statistical properties (MSE, bias, consistency...) hard or even
impossible to investigate from a theoretical standpoint

- variance estimation a big issue

« Non sampling errors

- e.g. [nonresponse / missing values / inconsistencies / ...]

- removing or reducing nonresponse bias requires: 1) understanding
non response mechanism and 2) accurate auxiliary information

- assessing imputation variance is very hard (depends on imputation
technique)
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Computing HT Variance for Multistage Designs (1/2)
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The HT variance formula obtained for SRSWOR can be suitably
modified to cope with multistage, stratified, cluster sampling designs

Complexity arising from multistage sampling is handled by the Ultimate
Cluster Approximation (Kalton 1979):

- as long as the first stage sampling fraction is small, contribution to
variance arising from stages other than the first can be neglected

Vi Cr) = A= £, ) Vi) + fond U= Lo Wo (B +

Therefore we need only to deal with PSUs. Let's write y,, (d, ;) for y
observed value (direct weight) for unit £ in PSU p in stratum s and call
n, (f,) the number (fraction) of sampled PSUs in stratum s

Define y weighted total for PSUs in stratum s:
j} sp = Z dspky spk

kep

and their mean:
v.=(/n)3 5,
p=1




Computing HT Variance for Multistage Designs (2/2)

* Now take the old SRSWOR expression and: 1) substitute weighted y
values for units with weighted y totals for PSUs, 2) sum resulting
expressions over all strata:

I}multi(f}HT) zZ(l—fS) " Zi(j;sp _i)z :Zns °(1_fS)S§sp

I’l _1 p—l

N

« Above formula is a good approximation for the HT variance estimator
under multistage WithOut Replacement sampling with equal
probabilities and small first stage sampling fractions

« Most statistical software use it with £,=0 also for estimating HT variance
for With Replacement sampling (thus implicitly using Hansen-Hurwitz
rather than HT estimators). This works correctly both for equal and
unequal (pps) inclusion probabilities

« Using the formula above with f£,=0 for pps WithOut Replacement
sampling results in conservative variance estimates. Alternatively, one
must find approximate formulas for second order inclusion probabilities
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The Calibration Approach to Survey Sampling

What do we mean by calibration?

 General definition

- a method to improve the quality of inferences by using
available auxiliary information on the target population in a
systematic and rigorous way

* Operative definition

- amethod to compute weights (calibration weights) in such
a way that:

1) a specified set of constraints (calibration equations)
involving auxiliary variables is satisfied

2) weights can be used to compute weighted (though non
linear) estimators (calibration estimators) of arbitrary
population parameters

3) calibration estimators are nearly unbiased and more
efficient than HT
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The Calibration Problem

\?v:%c;ts dy Calibration Problem
Distance min » G(w,,d,) o
function G kes Calibration
\ weights
Auxiliary ¢ R < Zwkxk - X l—
variables k e
Population /
totals X <Y <y
q dk
Bounds [[L,U]
Calibration
Estimators
Y, CAL — Zkak
kes
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The Calibration Problem: Some Comments (1/2)

From a mathematical point of view, calibration is a constrained
optimization problem:

- calibration weights are obtained by minimizing an appropriate
distance function from direct weights...

- ...subject to calibration constraints ensuring that the calibrated
estimates of the totals of a set of auxiliary variables exactly match
the corresponding known population totals

 From a statistical perspective, calibration generates a whole new class
of estimators: the Calibration Estimators

« An important property of Calibration Estimators is UNIVERSALITY:
since the calibration problem knows nothing about y

- one can use the same set of calibration weights w, to estimate
arbitrary interest variables y

« Universality is often a fundamental requirement in Official Statistics, as
sample surveys are typically multipurpose:

- Calibrate once, estimate whatever you need!
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The Calibration Problem: Some Comments (2/2)

« Because sample size is greater than the number of auxiliary variables,
calibration constraints alone are unable to select a unique set of
calibration weights

» Distance minimization picks out a specific solution, but still we are left
with the freedom to choose among many distinct distance functions G

 |n order to ensure a solution, G must be twice differentiable w.r.t. w and
strictly convex in a neighborhood of w=d, with G(d,d)=0

« Calibration weights will be a (complicated) function of direct weights,
auxiliary variables and population totals (as well as of bounds, if any)

* Only for Euclidean G will that function be expressible in analytic closed-
form

« When G is the Euclidean distance, calibration estimators are identical
to GREG estimators

« There exists a family of distances G such that calibration estimators
are asymptotically equivalent to GREG for “big” sample sizes »
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Calibration: Why Minimizing a Distance?

« The idea of imposing calibration constraints seems rather
natural: it's good to make our estimates consistent with known
aggregates...

* ...but why do we need to minimize a distance between direct
and calibration weights?

* The reason is that we do want to modify as little as possible a
good property of HT estimators: unbiasedness!

« Asking for near unbiasedness of calibration estimators
(whatever the choice of variable y)...

B(?CAL) = E(YCAL -Y)= E(fCAL _YAHT) = E(Zyk(wk _dk)j ~0

kes

« ...evidently translates into requiring small deviations from direct
weights:

w,—d, =0 Vkes
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How Does Calibration Improve Efficiency? (1/4)

* Generalized Regression Estimator basic theory provides a useful
starting point

* Given the descriptive linear assisting model ¢ with p regressors x;, ..., x;;

S Y~ X Pt
E.(&)=0, V.(g)=0" <o, Cov.(&,5)=0 Vk,jeU

« the GREG estimator for the total of y reads:
Yo = (Zxk)'ﬁ+zdk(yk X P) =Y, +(X=X,;;)B

keU kes

« where the weighted estimator for  has the familiar Least Squares
expression arising in ordinary regression theory:

B=(X'DX)(X'DY)= (dexi ‘ij '[dexiykj =Tt

kes kes

» with D being the diagonal matrix of sample direct weights and X (Y) the
matrix (vector) of sample values for the auxiliary variables (study
variable)
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How Does Calibration Improve Efficiency? (2/4)

*  GREG estimator can be seen as the sum of an HT estimator plus a
regression adjustment term, which is proportional to the difference
between population totals and HT estimates of predictors (auxiliary
variables)

* Moreover, since the weighted estimator of § is linear in y, it follows that
the GREG can be expressed as a weighted sum of y,:

YAGREG = ZWkYk = ng (d )

kes kes

« for some weights w, (or ratios g,= w, / d,) that depend (with a
complicated expression) on direct weights and x values, but not on y:

g, =w./ld, =1+(X—)A(HT)-T_1-X§c

* Not only is GREG a weighted estimator (though non-linear, due to the
expression of the sample estimate of ), what's more the weights it
involves happen to be calibrated!

XoreG = Zwkxk = Zxk =X

kes keU
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How Does Calibration Improve Efficiency? (3/4)

» Provided both target population and sample sizes are big, GREG main
statistical properties are under theoretical control

« Whatever the assisting model &, GREG is asymptotically unbiased with
relative bias of order:

B(Yyes)/ Y =O(n™)

* Moreover if we call R’ the determination coefficient of the census least
squares fit to the assisting model &, we can express GREG’s variance
as follows:

V (Foee) = [1- R + O™ ") |-V (7,

* Hence the efficiency gain of a GREG estimator, compared to the
simple HT estimator, depends on the goodness of the assisting model

¢ in fitting the population scatter of variables y, x, ..., x,

* The higher the power of the auxiliary variables x,, ..., x, to predict the
study variable y, the smaller will be GREG’s variance
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How Does Calibration Improve Efficiency? (4/4)

« Now we are in a good position to understand how does calibration
improve efficiency

 The key point is that one can prove, under mild conditions on distance
functions G and whatever the choice of variable y, that:

Yeur = Yoreg = Op (”_1)

* namely, all Calibration estimators converge in probability to the GREG
estimator when the sample size grows

» Therefore, as a consequence of GREG properties, we can expect that
a calibration procedure will yield efficient estimates provided that the
auxiliary variables explain/predict well the study variable(s)

* Notice also that, being GREG asymptotically unbiased, the same will
hold true for every calibration estimator, no matter how badly one can
choose the auxiliary variables:

B(Y.,)/Y=0(n™)
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GREG: Useful Alternative Expressions

* HT + Regression Adjustment

YAGREG = YAHT +(X_XHT)'IS

« Population Projection of Predictions + Residuals

YGREG = Zj}k +deek

kelU kes
Vi =X, P
€. = Vi = Vi

« Calibration Weighted Total

YGREG = Z Wi Vi

kes

w, =g,d,
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Estimating Calibration Estimators Variance (1/4)

 Till now we learned that both Calibration and GREG estimators are
nearly unbiased and more efficient then HT

* Anyway we still must face the problem of estimating their variance
(otherwise we cannot build meaningful confidence intervals around
estimates)

» Both estimators are non linear functions of sample membership
indicators, so an exact variance formula cannot be obtained

« Taylor linearization technique is widely used to provide approximate
variance formulas for nonlinear estimators:

1) A complex function of HT estimators get expanded in power series
around expected (=true) values till first order

2) Higher order contribution to variance are discarded, even without
any warranty that their importance is actually negligible

3) Usual variance formulas for HT estimators are applied to the
linearized estimator

Diego Zardetto, Estimation Theory for Sample Surveys @




Estimating Calibration Estimators Variance (2/4)

« By adding and subtracting  wherever you get it's estimator in GREG
formula, GREG can be re-expressed as:

YAGREG = (Zxk)'ﬁ+zdk(J’k Xy 'l})_i_(X_XHT)'(ﬁ_B)

keU kes

« First term is a constant not contributing to sampling variance, third term
can be proved to be of smaller order compared to the second, which
equals the HT estimator of the population sum of residuals to the
census least-squares fit of model & Thus:

YGREG,lin = de (Ve X, B) = deEk

kes kes

« Because we don’t know 3 we must substitute population residuals E,
with their sample estimates ¢,. At the end we obtain:

V(YGREG) V(YGREGlm) ZZ{ ijd ekde

kes jes ﬂkj

e, =V, — X, P
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Estimating Calibration Estimators Variance (3/4)

« Although our last formula gives a good variance estimator, a better one
has been proposed by Sarndal (1982):

A A A A A .
V(YGREG) ~ V(YGREG,Zin) = ZZ(@JWkeijej

kes jes ﬂkj

w,(d) = g, (d)d,

* Notice that it relies on GREG “calibrated” weights, which (as we
already stressed) are complex functions of direct weights d=(d,,...,d,)

* Notice also that above formula equals the ordinary HT variance
estimator for the population total of the g-expanded residuals:

I}(?GREG) ~ I}(YAGREG,lin) = I}(Z d, (gkek)]

kes

« Last remark explains why this formula is so widely used in survey
analysis software: it allows you to use your ordinary HT variance
estimation program on the new linearized variable g, e,= (w,/d, ) e,
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Estimating Calibration Estimators Variance (4/4)

* Once we have our preferred variance estimator for GREG, we can
directly use it also for Calibration estimators (again by means of
asymptotic equivalence)

« The final cookbook recipe for estimating Calibration estimators
variance is as follows:

1) Solve by a computer program your calibration problem; take at
hand the calibration weights w,

2) Compute weighted regression coefficients by projecting your
interest variable y on the auxiliary variables x,, ..., x, and using
direct weights d,

3) Use regression coefficients from step 2) to compute estimated
residuals e,; use calibration weights from step 1) to compute g-
expanded residuals g, e,= (w,/d, ) e,

4) Treat the g-expanded residuals from step 3) as an ordinary
variable of interest; compute its total’s variance letting do the work
to your ordinary HT variance estimation program
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Calibration Metrics

« Back to the Calibration Problem: the most popular distance functions
are Euclidean (aka Linear), Logarithmic (aka Raking) and Logit. Each
one leads to calibration weights with their own distinctive features

 Euclidean distance

G=) (w,—d) /<2dk)

kes

« If bounds constraints are not imposed, the Euclidean (or Unbounded
Linear) distance leads to Calibration Estimators identical to GREG

« Calibration weights can sometimes be less than 1 or even negative; for
estimation purposes this is not a problem, though it may seem strange
to naive users

 Anyway it is possible to search for g-weights falling in a given interval
0<L<U<w by simply truncating the Euclidean distance (obtaining thus
the Bounded Linear distance)

« Remember that imposing additional bounds constraints can sometimes
prevent from finding a numerical solution to the Calibration Problem
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Unbounded Linear Calibration (1/2)

 Euclidean unbounded distance:

G=) (w,—d) /<2dk)

kes

- allows to get an analytic closed-form solution to the calibration

problem:
fminZG(wk,dk)
) kes

Zwkxkj =X,
\ kes

« Introducing a set of Lagrange multipliers (1 for each auxiliary variable)
one is led to the unconstrained minimization of a new function Q:

0= G+Z/1j(Xj —Zwkxkj)

kes

» Setting to zero first derivatives of Q w.r.t. w;, and 4; one obtains:
0=00/0ow, =0G/ow,— Y Ax, =g, —1-LN'x]
j

;
0=00/04 =X, =Y wx,

kes

\
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Unbounded Linear Calibration (2/2)

Substituting first equation into second (via w,=g, d,) one gets for 4:

Z(Z dkx;kxki)ﬂ“i = Xj _)A(JI'{T

i kes

» Above equation can be expressed in matrix notation as follows:
T-A= (X_XHT)t

* where:
T=>dx X,

kes

« So that the following expression for 4 stems:
A=T"'(X-X,,)

* And finally the g-weights formula reads:
g, =1+A x, =1+(X-X,,)-T"-x.

« ltis easy to recognize this is equal to the GREG g-weights expression
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Raking and Logit Calibration (1/2)

Raking distance
G=> {wIn(w,/d)-w,+d,}

kes

« Logit distance

_ B g —L _ . g —U
G_Z{(gk L)ln( I—Lj (g U)ln(l U j}

kes -

* For both above distances one cannot end up with an analytic closed-
form expression for the calibration weights. Anyway it is easy to prove
that the following implicit formula holds for the g-weights:

g, =F(x,-X) where F=(0G/ow)"

with 4 implicitly defined by the calibration constraints

« Given its central role, the function F, namely the inverse of G’s first
order derivative, is called the Calibration Function
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Raking and Logit Calibration (2/2)

 Notice that the Calibration Function associated to the Euclidean
distance is F(u)=1+u, thus making clear the origin of the ‘Linear’ alias

- For the Raking distance you get F(u)=¢e“, hence calibration weights are
surely positive. Because same weight may be found to be
unexpectedly larger than the others, sometimes the Bounded Raking
distance is preferred

« The ‘Raking’ alias comes from the fact that, when known population
totals are the marginal distributions of two categorical variables, you
end-up with the Raking Estimator

« The Logit distance automatically builds g-weights constrained to fall
into the interval -co<L<U<wo

* For that reason Logit Calibration is a very popular choice in National
Statistical Agencies (mainly in Europe): it helps to control the size of
calibration weights, hence allowing those weights to be used in a wide
variety of statistical analyses
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Calibration Metrics and g-weights Features
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Calibration Estimators: Familiar Examples (1/4)

« Suppose the Euclidean unbounded metric is selected, so g-weights
are:

8 :1+(X_XHT)'T_1°X;C

« we want to derive explicitly the expressions of calibration estimators for
some simple auxiliary information

 Total number of units in the population

« This is the simplest case of auxiliary information, the only auxiliary
variable being x,=1 for all k, thus:

T=N = g =N/N

 and the calibration estimator looks as Hajek ratio estimator of the total:

A Y

YCAL - N(ﬁj
Notice that, for SRSWOR, calibration and HT estimators are the same
because direct weights perfectly estimate N
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Calibration Estimators: Familiar Examples (2/4)

 Population counts in a one-way classification

« Population U is partitioned in P non overlapping and exhaustive
subpopulations U, with p=1,...,P. The total number of units N,
belonging to every subpopulation p is known

« The auxiliary vector can be represented as follows:
1 if keU,

Xy = (Viroeees Vip) Where 7/"1’:{0 if keU
p

T is adiagonal PxP matrix whose p-th diagonal element equals the HT
estimator of the total of units in subpopulation U;;:

N, 0

 The only contribution to the matrix product T-! x, arises from the only

nonzero component of x,, namely the one referring to the
subpopulation p(k) to which unit £ belongs
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Calibration Estimators: Familiar Examples (3/4)

Thus one obtains:
g =1+(N p(k) p(k))/ p(k) Np(k)/ Np(k)

« that is calibration amounts to rescaling direct weights by factors
depending only on the subpopulation. The resulting estimator has the
same expression as the Post-stratification Estimator:

\ i Y
You=) N -
p=l g Np

« that is a sum of partition means estimators, each weighted by the
known partition total

« For SRSWOR, denoting by n, the sample units belonging to the p-th
partition subset s,, we get:

-5, [zyk/nj SN,

kes p=l1
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Calibration Estimators: Familiar Examples (4/4)

Diego Zardetto, Estimation Theory for Sample Surveys

Total of a single numeric variable

Population total X of a single numeric variable x (e.g. income) is
supposed to be known. This time T equals the HT estimate for the

population total of x?, thus:
A

g, =1+x,(X-X)/ X*

so that the calibration estimator is:

N\
A A ~ XY
Yeur :Y+(X_X)T
X2

The latter expression is easily recognized as the GREG for a model
with only one predictor and no intercept:




Effects of Nonresponse on Estimates (1/5)

« Till now we supposed that survey variables were observed for all the n
units belonging to the selected random sample s

* Inreal surveys this is almost never the case: due to the nonresponse
phenomenon we can actually collect information only on m < n units
belonging to a subset r of the planned sample s

Selected sample s
size n

Nonresponse set s-r

size n-m
Target population U
size N

Response set r
size m
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Effects of Nonresponse on Estimates (2/5)

«  The response set r (as well as the nonresponse set s-r) is a random
set. It can be thought as the outcome of two subsequent random
experiments:

1) Sampling phase: select a random sample s from U under the
given design

2) Response phase: for each unit k£ in s include it into » with a
specified response probability ¢,

*  Response probabilities are unknown, if they were not we could easily
modify our previous theoretical results to deal with nonresponse

The simple rule would be: substitute everywhere sample inclusion
probabilities z;, with response set inclusion probabilities p,:

p, =Pr(k = r)=Pr(k < 5)Pr(k < rls) = 7,0,
«  This rule would lead e.g. to the two-phase extension of HT estimators:

fzp = Zyk(l/pk) :Zyk(dk /)

ker ker
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Effects of Nonresponse on Estimates (3/5)

« What would happen if, being response probabilities unknown, we
simply keep using old theory in analyzing a real survey?

« This would lead to many undesired effects, the worst being
nonresponse bias

« Understanding how nonresponse bias can arise is simple:

- nonresponse probability is not uniform over population units: it is
higher for units belonging to specific subpopulations (e.g. in social
surveys, for older persons, metropolitan residents, ...)

- subpopulations which have, on average, higher nonresponse rates
will be under-represented in the response set compared to what
would happen in the sample

- thus standard HT estimates for the size of those subpopulation will
be downward biased

- HT estimates for variables that covary with the ones defining high
nonresponse subpopulations will be biased too (under-estimated or
over-estimated depending on whether they are positively or
negatively correlated)
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Effects of Nonresponse on Estimates (4/5)

« A useful (though somewhat unrealistic) example of nonresponse bias:

- Suppose you want to estimate the total income I for population U

- Suppose you are sampling by SRSWOR from a population
containing nearly the same number of males and females, N,,~ N,

- Suppose nonresponse probability for males is significantly higher
than for females (say twice, ¢, = ¢,/ 2)

- Suppose also that incomes are higher, on average, for males than
for females (say twice, I,,/ N, ~ 2 L./ N, )

- How much bias would you expect if you decide to use a standard
HT estimator?

E(jHT) ZE(Zik/”k) = E(Z5k(”)ik/7[k) = Zik/”kE(5k(”)) =

ker keU keU
: . : |
= Zlk(Pk = Zlk(pf + Zlk((Pf /2)= (Df(EIM +1,)= Z(PfIF =
keU keF keM
2
=—pd
39
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Effects of Nonresponse on Estimates (5/5)

« Another effect of nonresponse is a loss of efficiency in estimates:
variance is increased due to the reduction of the effective sample size

« The latter may be considered a minor disturbance compared to
nonresponse bias

- we could fight nonresponse variance simply by some degree of
‘over-sampling’, at the price of some additional data collection
cost

« Thus we are left with the following conclusion:

- nonresponse affects all real-word surveys
- nonresponse bias is its most dangerous drawback
- trying to reduce nonresponse bias is mandatory

- to do this we must modify our previous (ideal) design-based
survey theory

- we have to understand how to modify it
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Reducing Nonresponse Bias: How? (1/2)

 As we said, we must change our previous theory in order to reduce
nonresponse bias

* This can be done in 2 ways, both relying on auxiliary information:

- The two-phase approach: exploit auxiliary information to estimate
(i.e. model) unknown response probabilities

@, unknown = @, =@,(x,,...,x,) estimated

then use two-phase extended HT estimators
Y)p :Zyk(dk /)

ker

- The calibration approach: exploit auxiliary information and

nonresponse patterns to identify ‘good calibration variables’
Xpseons X, > X0y

then use calibration estimators to reduce both estimators variance
and nonresponse bias

You = Zwkyk

ker
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Reducing Nonresponse Bias: How? (2/2)

«  Comparing 2P and CAL estimators one can find a link between the
two techniques:

- calibration g-weights can be thought as proxy-values for inverse
response probabilities: g,=wyd, — 1/ ¢,

«  The two-phase approach has been very popular in the last 30 years
but today the calibration approach is generally preferred

«  The most important advantages of the CAL approach over the 2P one
are the following:

2P

- itis necessary to explicitly build a nonresponse model and then to use it
to estimate nonresponse probabilities

- asubsequent calibration step is required to increase estimators efficiency

CAL

- agood description of the nonresponse mechanism in terms of correlated
variables is enough

- asingle calibration step can reduce both nonresponse bias and
estimators variance
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The Response Homogeneity Group Model (1/3)

* The Response Homogeneity Group model (RHG) is perhaps the most
popular implementation of the 2P approach to nonresponse bias
reduction

 RHG key assumption is that the population consists of non-overlapping
subpopulations (the Groups) such that:

- all units within each group respond with the same probability
- different groups may have different response probabilities
- response/nonresponse outcomes are independent for all the units

* In formulas:
U=G,UG,U..UG,
GiﬂGJ.:@ for i#j
¢, =const=®’  VkeG,
D' = D’ for i#j
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The Response Homogeneity Group Model (2/3)

« The modeling effort for the RHG model lies in the problem of forming
groups G; that give nearly constant response probability @ within each

group

« Those groups must be built with the aid of some auxiliary variables,
whose values we have to know, at least, for every unit belonging to the
planned sample (thus also for nonrespondents)

* Moreover since response probabilities are unknown, groups get formed
by using observed response rates inside groups as estimates:

(VkeG,

lp, = ® unknown +— @, = D' estimated

cDj:mj/nj where mj:HGjmrH and nszGjmsH

* From the above formulas one recognizes that under the RHG model
(and given the actual response rates for the groups) the response set
is seen as Stratified SRSWOR sample drawn from the planned
sample, with strata given by the Groups
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The Response Homogeneity Group Model (3/3)

«  Very often Groups for the RHG model are built by collapsing in some
‘smart’ fashion real design-strata

«  Here 'smart collapsing’ means a collapsing such that the overall
response rates inside each obtained Group are found nearly constant

« Atechnique used in Istat for the survey on the small and medium
enterprises (PMI) is as follows:

a) Compute response rates inside real design-strata (since strata are a
big number, some of those rates may be 0 due to nonresponse)

b) Compute the deciles of the distribution from point a) and classify
enterprises inside the 10 obtained cells

c) Treat enterprises belonging to each cell as a distinct RHG group

d) Attach to each enterprise an estimated response probability %«
given by the overall response rate for its group

« Atthe end, each enterprise gets a new nonresponse adjusted weight:

wk:dk/@k

«  This weight is further used as an initial weight in a subsequent
calibration step (whose major aim is variance reduction)
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Handling Nonresponse by Calibration (1/2)

 To understand why calibration should succeed in reducing nonresponse
bias, one has first to define when calibration variables are ‘good’

» A good auxiliary vector (to calibrate on) should be one that:

a) is able to explain the variation of response propensity
b) covaries with the main study variables
c) ldentifies the most important estimation domains

« Fulfilling requirement a) is of crucial importance for achieving an
effective reduction of nonresponse bias for all possible variables of
interest

* Property b) is the basic condition (already discussed) to ensure a
variance reduction when using calibration estimators; it also helps to
remove the nonresponse bias for the covariates (a smaller set of study
variables)

* Principle c) gives a contribution to both bias and variance reduction in
domain estimates
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Handling Nonresponse by Calibration (2/2)

« Because nonresponse mechanism is unknown, it is impossible to
prove theoretically that requirement a) will do the job

* Anyway Monte Carlo simulation studies (in which nonresponse is fully
under control) give strong support

« To get an intuitive insight of why should requirement a) work one can
think as follows:
- calibrating on variables that are strongly correlated with

(non)response behavior exactly removes nonresponse bias from
the estimates of the population totals of the auxiliary variables

- thus it is likely (actually true for most of the practical applications)
that calibration at least decreases nonresponse bias for study
variables covarying with the auxiliary ones
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Different Levels of Auxiliary Information (1/2)

* When using calibration to fight nonresponse bias, 2 distinct levels of
auxiliary information can be used
* Info-U

- the population total of variables x = (x,,..., x, ) is known:

X, :Zxk

 [nfo-S

- auxiliary variables values are known for every unit belonging to the
selected sample (thus also for nonrespondents), so one can
compute:

X = dexk

kes

* In both cases the values of the auxiliary variables x, must be known for
every respondent unit £ belonging to the response set r

« When powerful auxiliary information is available, it is also possible to
mix InfoU and InfoS variables: the resulting vector can be denoted as
Info-US
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Different Levels of Auxiliary Information (2/2)

 When we discussed calibration as a tool to gain precision we only dealt
with auxiliary information of the Info-U kind

* Info-S is something new: we are using Xy as it was a population total
while it is actually an HT estimate (though an estimate built by using
both respondents and nonrespondents)

- the key point is that calibrating the respondent weights on an
unbiased estimate of a population total (which X is) turns to be
enough to soften nonresponse bias

* Notice that Info-S calibration will be less effective then Info-U in
decreasing estimators variance, since some additional variability is
introduced into the calibration constraints via the benchmark values X

» For this reason, after having performed an Info-S calibration step to
handle nonresponse bias, almost always a subsequent Info-U
calibration step is carried out to gain efficiency
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1-Step Calibration vs 2-Step Calibration (1/2)

« The calibration problem for Info-U and Info-S reads:

min Y Gw!,d,)

ker

US.
ZWk X, = Xys

L ker

<

« When auxiliary information fulfills simultaneously all conditions a) b)
and c), the solution of the above problem can achieve the goal of
reducing both nonresponse bias and variance

« After this one-step calibration (CAL1S) procedure the final weights will
be simply:

Us _ US
w, " =g.7d,

« Otherwise, when only condition a) holds a subsequent calibration is
required to gain efficiency (no matter if you are using Info-U or Info-S)

« This leads to the widely diffused two-step calibration technique
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1-Step Calibration vs 2-Step Calibration (2/2)

The two-step calibration (CAL2S) technique is summarized as follows:
- Step1. Calibrate direct weights to reduce nonresponse Bias

- Step2. Calibrate Step1 output weights to reduce estimators
Variance

. CALZS final weights will be:
Step?2 Stepl Step?2 tepld

_gk = 8k

* Notice that CAL2S final weights will satisfy exactly only Step2
calibration constraints, while slightly violating those imposed in Step1

» This ‘soft’ violation of Step1 calibration constraints can be shown to
have only a negligible impact: nonresponse bias doesn’t resurrect
anymore

* Notice also that, for the same given set of auxiliary variables, CAL2S
shows a big advantage over CAL1S, namely it needs a substantially
lower computational burden (indeed complexity of calibration
algorithms grows more than linearly with the number of auxiliary
variables)

 As a consequence, CAL2S is sometimes preferred to CAL1S even
when powerful auxiliary information fulfilling a) b) and c) is available
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Appendix — Selected Topics
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Estimating 2-stage Variance in Practice (1/2)

« Under 2-stage stratified cluster sampling without replacement and
equal inclusion probabilities, HT variance estimator formula has
general structure

Vs (T = > {Z[ (1-

strat psu

Y Gy + S 5 ) ) H

Ssu

« where:

- fsﬁ? is the sampling fraction of PSUs in stratum strat

SSU
B is the sampling fraction of SSUs inside sampled PSU psu

Yelus  stands for the weighted total of y inside cluster clus

the functional form of v; depends on the adopted sampling scheme
at stage i

« This formula can be computed by representing the sample as a tree
and then summing all the contribution attached to its nodes
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Estimating 2-stage Variance in Practice (2/2)

Must sum contributions from all the nodes of the sampling tree

70

(1 ~forar )Vl (V)

SSU, SsU;: | Ssu,, F0 = £ )y (7,0
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Calibration with Heteroskedasticity (1/5)

\?v:z:]c;ts d, Calibration Problem
Distance minZG(Wkadk) X[ ¢
function G kes Calibration
\ weights
Auxiliary [ o > wx, =X i
variables k kes k
Population /
totals X L< Wi <U
L dk
Bounds |[L,U]
Heterosk. [, Calibration
factors Estimators

YACAL = Z Wik

kes
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Calibration with Heteroskedasticity (2/5)

* A more general version of the calibration problem can
incorporate a set of multiplicative factors ¢, inside the distance
function

« Such c, factors must be:
- Strictly positive
- Uncorrelated with direct weights d,

* Most applications will use ¢, =1 for all sample units k, which
leads back to the ordinary calibration problem

- This is generally the standard choice in social surveys

« The final effect of using any nontrivial (i.e. non-constant) set of ¢,
values will be that:

on average, calibrated weights w, of units with higher values of
c, will tend to stay closer to their corresponding initial weights d,
than would happen for units with lower c,
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Calibration with Heteroskedasticity (3/5)

« Thus, with a smart choice of factors c,, we may try to prevent the
calibration algorithm to change too much the weights of selected
influent units

- This opportunity is often exploited in enterprise surveys

* Interest variables in enterprise surveys may be highly skewed, so that
few big firms can account for a significant fraction of the population
total Y

« Even if these big firms are censused, i.e. their direct weight is 1,
calibration could inflate their weight, thus generating influent outliers,
which could impair estimation

k: (y, isbig) AND (w, is big)

« To contrast this risk, a good choice is to use the “enterprise size” (e.g.
as measured by the number of employees) to set the ¢, values:

c, = empnum,
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Calibration with Heteroskedasticity (4/5)

« To understand why the ¢, are called heteroskedasticity factors one has
to resort to the GREG

* Indeed, if the linear assisting model £ underlying the calibration problem
is heteroskedastic

St Ve ~X Bre
E.(g,)=0, Vf(gk)zck-0'2<00, Cov.(¢,,6,)=0 Vk,jeU

» the GREG estimator for the total of y still reads:

N

YGREG =Yyr +(X_XHT)‘B

* but now the estimator for § has the Generalized Least Squares
expression:

-1
ﬁ: (XIDC_IX)_I(XIDC_IY) :[Zﬁxz .ij [Zﬁxiyk] — T—l -t
kes Ck kes Ck

« where C is the diagonal matrix of the ¢,
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Calibration with Heteroskedasticity (5/5)

« Since the weighted estimator of B is still linear in y, the GREG can still
be expressed as a weighted sum of y,:

YGREG = Zwkyk = ng(dkyk)

kes kes

* but now the g-weights explicitly depend on the heteroskedasticity
factors ¢, :

g, =w,/d, :1+(X—}A(HT)-T_1 -x; ck_1

* Now it's easy to prove that Unbounded Linear Calibration with
nontrivial ¢, values yields exactly the same g-weights as the
Heteroskedastic GREG expression above

« Similarly, for Raking and Logit distances nontrivial ¢, values imply:

g, = F(xk ‘A ck_l) where F =(0G/ow)"
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The Ratio Estimator as a Calibration Estimator

« The Ratio Estimator of the Total long predates the theory of Calibration

» It exploits as auxiliary information the population total X of a single
numeric variable x which is believed to be positively correlated with the
interest variable y

* Interestingly enough, while the Ratio Estimator can be shown to be a
specific case of Calibration, this necessarily requires a heteroskedastic

calibration model, with ¢, = x;,
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Taylor Linearization Variance in a Nutshell (1/3)

« Complex population parameter, non linear function of population totals

0=f,....1,)

* Natural estimator (generally biased): same function of HT estimators
6=f(,..Y,)

« Expand it by Taylor series to first order around true totals Y=(Y,,...,Y,)

lln Zd Zk + const Zk - Z af y]k
kes Jj=1 5Y

Here const means constant (maybe unknown) terms not depending on
the sample. Notice that the linearized estimator is unbiased for 6
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Taylor Linearization Variance in a Nutshell (2/3)
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Now you are left with the problem of estimating the variance of an HT
estimator for the total of a new variable z, namely the linearized
variable derived by 8 (aka Woodruff transform)

VO =V (Y diz)=>Y dzAd,z,

kes kes jes

Because the linearized variable depends on unknown population totals,
it must be substituted with the same expression computed using
sample estimates

So you end with the approximate variance estimator

VO~V (> dz)= ZZdzk[ J]

kes kes jes




Taylor Linearization Variance in a Nutshell (3/3)

* Notice that the linearized variable associated to a complex estimator
can also be expressed as follows:

af_df

» j.e. it equals the total derivative of the complex estimator w.r.t. the
direct weights, evaluated at d=(d,,...,d,)

* This formula can be useful whenever it's easier to think the complex
estimator as a complex function of direct weights, rather then of HT
estimators. GREG and Calibration estimators are good examples
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Taylor Linearization Examples

« Ratio Estimator (numerator and denominator are both supposed HT
estimators)

N

R=L
X

» corresponding linearization variable (Woodruff transform)

Z, = —= +—=
CTorl Tk

Xy

1 .
Xk :}(J’k — Rx;)

Xy

« Ratio Estimator of a Total (population total X for the denominator
variable is supposed to be known from external sources)

Y, = X[Xj = XR
X

« corresponding linearization variable (Woodruff transform)

_ oY, oY, X .

Z, =—=~ +—F X, =—= — Rx

- A)’k x| X(J’k v)
XY XY
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Exercise: GREG Taylor Linearization (1/2)

« Start with GREG estimator expressions

YAGREG = (Zxk)'ﬁ+zdk(J’k Xy l}) = ng(ko’k)

keU kes kes

» using available formulas for the regression coefficients estimator

ﬁ = (deXZ 'Xk]_ '(dexiykJ =Tt

kes kes
« first obtain g-weights expression

8 :1+(X_XHT)°T_1.XZI;

« then compute explicitly GREG linearization variable (a la Woodruff)

d - d
K d(d,) d Sk ; ) d(d,) &

d
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Exercise: GREG Taylor Linearization (2/2)

- start computing the derivative of g, w.r.t. d,

d

ny . L odr |,
d(dk)gj:—kalxj+(X—XHT){—Tl Tl}x.

d(d,) '

« then compute the derivative of T w.r.t d,
d
——T=x,x,
d(d,)

» lastly substitute and simplify to get final result
d

jyj@gj =gV — X P (g —Dx; P

d

Ze = & Vi +Zd

jes
=g, (Vi —x,-B)

= g6

« Above expression leads directly to Sarndal proposal for the GREG
variance estimator
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